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Data

Experimental data describes the outcome of the experimental run. For example
10 successive runs in a chemical experiment produce the following data:
set.seed(100)

# Generate a random sample of 5 observations

# from a N(60,10^2)

dat <- round(rnorm(5,mean = 60,sd = 10),1)

dat

## [1] 55.0 61.3 59.2 68.9 61.2

←



Distributions

Distributions can be displayed graphically or numerically.

A histogram is a graphical summary of a data set.
summary(dat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 55.00 59.20 61.20 61.12 61.30 68.90
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Distributions

hist(dat)

Histogram of dat
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Distributions

I The total aggregate of observations that might occur as a result of
repeatedly performing a particular operation is called a population of
observations.

I The observations that actually occur are a sample from the population.



Continuous Distributions

I A continuous random variable X is fully characterized by it’s density
function f (x).

I f (x) Ø 0, f is piecewise continuous, and
s Œ

≠Œ f (x)dx = 1.

I The cumulative distribution function (CDF) of X is defined as:

F (x) = P(X Æ x) =
⁄ x

≠Œ
f (x)dx .
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Continuous Distributions

I If f is continuous at x then F Õ(x) = f (x) (fundamental theorem of
calculus).

I The CDF can be used to calculate the probability that X falls in the interval
(a, b). This is the area under the density curve which can also be expressed
in terms of the CDF:

P (a < X < b) =
⁄ b

a
f (x)dx = F (b) ≠ F (a).

I In R a list of all the common distributions can be obtained by the command
help("distributions").

I For example, the normal density and CDF are given by dnorm() and
pnorm().
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Continuous Distributions

100 observations (using rchisq()) from a Chi-square distribution on 10 degrees
of freedom ‰2

10. The density function of the ‰2
10 is superimposed over the

histogram of the sample.
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Randomness

I A random drawing is where each member of the population has an equal
chance of being selected.

I The hypothesis of random sampling may not apply to real data.
I For example, cold days are usually followed by cold days.
I So daily temperature not directly representable by random drawings.
I In many cases we can’t rely on the random sampling property although

design can make this assumption relevant.



Parameters and Statistics

What is the di�erence between a parameter and a statistic?
I A parameter is a population quantity and a statistic is a quantity based on

a sample drawn from the population.

Example: The population of all adult (18+ years old) males in Toronto, Canada.
I Suppose that there are N adult males and the quantity of interest, y , is age.
I A sample of size n is drawn from this population.
I The population mean is µ =

qN
i=1 yi /N.

I The sample mean is ȳ =
qn

i=1 yi /n.OO
- fixed



Residuals and Degress of Freedom

yi ≠ ȳ is called a residual.
I Since

q
(yi ≠ ȳ) = 0 any n ≠ 1 completely determine the the last

observation.
I This is a constraint on the the residuals.
I So n residuals have n ≠ 1 degrees of freedom since the last residual cannot

be freely chosen.
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The Normal Distribution

The density function of the normal distribution with mean µ and standard
deviation ‡ is:

„(x) = 1
‡

Ô
2fi

exp
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1x ≠ µ
‡
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4

The cumulative distribution function (CDF) of a N(0, 1) distribution,

�(x) = P(X < x) =
⁄ x

≠Œ
„(x)dx
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The Normal Distribution

x <- seq(-4,4,by=0.1)

plot(x,dnorm(x),type="l",main = "The Standard Normal Distribution",

ylab=expression(paste(phi(x))))
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The Normal Distribution

plot(x <- seq(-2,2,by=0.1),pnorm(x),type="l",

xlab="x",ylab=expression(paste(Phi(x))),

main = "Standard Normal CDF")

−2 −1 0 1 2

0.
0

0.
4

0.
8

Standard Normal CDF

x

Φ
(x
)

A

p *← . ,
pace
)



The Normal Distribution

A random variable X that follows a normal distribution with mean µ and
variance ‡2 will be denoted by

X ≥ N
!
µ, ‡2" .

If Y ≥ N
!
µ, ‡2" then

Z ≥ N(0, 1),

where
Z = Y ≠ µ
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The Normal Distribution

X ≥ N(5, 3). Use R to find P(4 < X < 6).
pnorm(6,mean = 5,sd = sqrt(3))-pnorm(4,mean = 5,sd = sqrt(3))

## [1] 0.4362971
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Normal Quantile Plots

The following data are the weights from 11 tomato plants.

## [1] 29.9 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3

Do the weights follow a Normal distribution?



Normal Quantile Plots

A normal quantile plot in R can be obtained using qqnorm() for the normal
probability plot and qqline() to add the straight line.
qqnorm(tomato.data$pounds); qqline(tomato.data$pounds)
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Central Limit Theorem

The central limit theorem states that if X1, X2, ... is an independent sequence of
identically distributed random variables with mean µ = E(Xi ) and variance
‡2 = Var(Xi ) then

lim
næŒ

P
3

X̄ ≠ µ
‡Ôn

Æ x
4

= �(x),

where X̄ =
qn

i=1 Xi /n and �(x) is the standard normal CDF. This means that
the distribution of X̄ is approximately N

1
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Central Limit Theorem

Example: A fair coin is flipped 50 times. What is the distribution of the average
number of heads?

Xc - = f- if H A Binomial

Pki-1=0.5 { if T D Bernoulli
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Central Limit Theorem

set.seed(100)

Total.heads <- rbinom(100,50,0.5); Ave.heads <- Total.heads/50;

hist(Ave.heads, main = "Distribution - Average Number of Heads")
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Central Limit Theorem
set.seed(100)

x<- rbinom(100,50,0.5)/50 # draw a sample of 100 from bin(50,.5)

h <- hist(x, main = "", ) # create the histogram

# superimpoise normal density over histogram

xfit<-seq(min(x),max(x),length=40)

yfit <- dnorm(xfit,mean = .5,sd = sqrt((.5*.5)/50))

yfit <- yfit*diff(h$mids[1:2])*length(x)

lines(xfit,yfit)
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Chi-Square Distribution

Let X1, X2, ..., Xn be independent and identically distributed random variables
that have a N(0, 1) distribution. The distribution of

nÿ

i=1

X 2
i ,

has a chi-square distribution on n degrees of freedom or ‰2
n.

The mean of a ‰2
n is n with variance 2n.



Chi-Square Distribution

Let X1, X2, ..., Xn be independent with a N(µ, ‡2) distribution. What is the
distribution of the sample variance S2 =

qn
i=1(Xi ≠ X̄)2/(n ≠ 1)?
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t Distribution

If X ≥ N(0, 1) and W ≥ ‰2
n then the distribution of XÔ

W /n
has a t distribution

on n degrees of freedom or XÔ
W /n

≥ tn.



t Distribution

Let X1, X2, ... is an independent sequence of identically distributed random
variables that have a N(0, 1) distribution. What is the distribution of

X̄ ≠ µ
SÔ
n≠1

where S2 =
qn

i=1(Xi ≠ X̄)2/(n ≠ 1)?
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t Distribution
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F Distribution
Let X ≥ ‰2

m and Y ≥ ‰2
n be independent. The distribution of

W = X/m
Y /n ≥ Fm,n,

where Fm,n denotes the F distribution on m, n degrees of freedom. The F
distribution is right skewed (see graph below). For n > 2, E(W ) = n/(n ≠ 2). It
also follows that the square of a tn random variable follows an F1,n.
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Linear Regression

Lea (1965) discussed the relationship between mean annual temperature and
mortality index for a type of breast cancer in women taken from regions in
Europe (example from Wu and Hammada).

The data is shown below.
#Breast Cancer data

M <- c(102.5, 104.5, 100.4, 95.9, 87.0, 95.0, 88.6, 89.2,

78.9, 84.6, 81.7, 72.2, 65.1, 68.1, 67.3, 52.5)

T <- c(51.3, 49.9, 50.0,49.2, 48.5, 47.8, 47.3, 45.1,

46.3, 42.1, 44.2, 43.5, 42.3, 40.2, 31.8, 34.0)

0



Linear Regression

A linear regression model of mortality versus temperature is obtained by
estimating the intercept and slope in the equation:

yi = —0 + —1xi + ‘i , i = 1, ..., n

where ‘i ≥ N(0, ‡2). The values of —0, —1 that minimize the sum of squares

nÿ

i=1

(yi ≠ (—0 + —1xi ))2,

are called the least squares estimators. They are given by:
I —̂0 = ȳ ≠ —̂1x̄
I —̂1 = r Sy

Sx

r is the correlation between y and x , and Sx , Sy are the sample standard
deviations of x and y respectively.
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Linear Regression
plot(T,M,xlab="temperature",ylab="mortality index")
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Linear Regression
reg1 <- lm(M~T)

summary(reg1) # Parameter estimates and ANOVA table

##

## Call:

## lm(formula = M ~ T)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.8358 -5.6319 0.4904 4.3981 14.1200

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -21.7947 15.6719 -1.391 0.186

## T 2.3577 0.3489 6.758 9.2e-06 ***

## ---

## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

##

## Residual standard error: 7.545 on 14 degrees of freedom

## Multiple R-squared: 0.7654, Adjusted R-squared: 0.7486

## F-statistic: 45.67 on 1 and 14 DF, p-value: 9.202e-06
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Linear Regression
plot(T,M,xlab="temperature",ylab="mortality index")

abline(reg1) # Add regression line to the plot
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Linear Regression

#plot residuals vs. fitted

plot(reg1$fitted,reg1$residuals);

abline(h=0) # add horizontal line at 0
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Linear Regression

#check normality of residuals

qqnorm(reg1$residuals); qqline(reg1$residuals)
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Linear Regression
If there is more than one independent variable then the above model is called a
multiple linear regression model.

yi = —0 + —1xi1 + —2xi2 + · · · + —kxik + ‘i , i = 1, ..., n,

where ‘i ≥ N(0, ‡2).

This can also be expressed in matrix notation as

y = X— + ‘

The least squares estimator is

—̂ =
!
X T X

"≠1 X T y .

The covariance matrix of —̂ is
!
X T X

"≠1
‡2. An estimator of ‡2 is

‡̂2 = 1
n ≠ k

nÿ

i=1

(yi ≠ ŷi )2,

where ŷi = —̂0 + —̂1xi1 + · · · + —̂kxik is the predicted value of yi .
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Weighing Problem

Harold Hotelling in 1949 wrote a paper on how to obtain more accurate
weighings through experimental design.

Method 1
Weigh each apple separately.

Method 2
Obtain two weighings by

1. Weighing two apples in one pan.
2. Weighing one apple in one pan and the other apple in the other pan

/
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Weighing Problem

Let w1, w2 be the weights of apples one and two. Each weighing has standard
error ‡. So the precision of the estimates from method 1 is ‡.

If the objects are weighed together in one pan, resulting in measurement m1,
then in opposite pans, resulting in measurement m2, we have two equations for
the unknown weights w1, w2:

w1 + w2 = m1

w1 ≠ w2 = m2

This illustrates that  experimental

var @c) =P design Can  impact the

precision of the estimates
obtained .
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Weighing Problem

This can also be viewed as a linear regression problem y = X— + ‘:

y = (m1, m2)Õ, X =
3

1 1
1 ≠1

4
, — = (w1, w2)Õ.
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Weighing Problem

The least-squares estimates can be found using R.
#step-by-step matrix mutiplication example for weighing problem

X <- matrix(c(1,1,1,-1),nrow=2,ncol=2) #define X matrix

Y <- t(X)%*%X # multiply X^T by X (X^T*X) NB: t(X) is transpose of X

W <- solve(Y) # calculate the inverse

W %*% t(X) # calculate (X^T*X)^(-1)*X^T

## [,1] [,2]

## [1,] 0.5 0.5

## [2,] 0.5 -0.5

W # print (X^T*X)^(-1) for SE

## [,1] [,2]

## [1,] 0.5 0.0

## [2,] 0.0 0.5
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