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Data

Experimental data describes the outcome of the experimental run. For example
10 successive runs in a chemical experiment produce the following data:
set.seed(100) ﬁ—

# Generate a random sample of 5 observations

# from a N(60,1072)

dat <- round(rnorm(5,mean = 60,sd = 10),1)

dat

## [1] 55.0 61.3 59.2 68.9 61.2



Distributions

Distributions can be displayed graphically or numerically.
A histogram is a graphical summary of a data set.

summary (dat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 55.00 59.20 61.20 61.12 61.30 68.90
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Distributions

hist(dat)
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Distributions

> The total aggregate of observations that might occur as a result of
repeatedly performing a particular operation is called a population of
observations.

» The observations that actually occur are a sample from the population.



Continuous Distributions

> A continuous random variable X is fully characterized by it's density
function f(x).

» f(x) >0, f is piecewise continuous, and ffooo f(x)dx = 1.

» The cumulative distribution function (CDF) of X is defined as:

X

F(x)=P(X <x)= / f(x)dx.
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Continuous Distributions
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» If f is continuous at x then F’(x) = f(x) (fundamental theorem of
calculus).
» The CDF can be used to calculate the probability that X falls in the interval
(a, b). This is the area under the density curve which can also be expressed
in terms of the CDF:

b
Pa<X<b)= / f(x)dx = F(b) — F(a).

> In R a list of all the common distributions can be obtained by the command
help("distributions").

» For example, the normal density and CDF are given by dnorm() and
pnorm().
cdF - '




Continuous Distributions

100 observations (using rchisq()) from a Chi-square distribution on 10 degrees
of freedom x3,. The density function of the x3, is superimposed over the
histogram of the sample.
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Randomness

v

A random drawing is where each member of the population has an equal
chance of being selected.

The hypothesis of random sampling may not apply to real data.

For example, cold days are usually followed by cold days.

So daily temperature not directly representable by random drawings.

In many cases we can’t rely on the random sampling property although
design can make this assumption relevant.
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Parameters and Statistics

What is the difference between a parameter and a statistic?

» A parameter is a population quantity and a statistic is a quantity based on
a sample drawn from the population.

Example: The population of all adult (184 years old) males in Toronto, Canada.

» Suppose that there are N adult males and the quantity of interest, y, is age.
» A sample of size n is drawn from this population.

» The population mean s% Z,N:1 yi/N. — —Cixgd

. n
> The sample mean i iy yi/n.



Residuals and Degress of Freedom
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yi — y is called a residuy (SRS

> Since > (yi — y)’=0 any n — 1 completely determine the the last
observation.

» This is a constraint on the the residuals.

» So n residuals have n — 1 degrees of freedom since the last residual cannot
be freely chosen.



The Normal Distribution
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The density function of the normal distribution with mear@nd standard
deviation és:

d(x) = U\}Eexp <_21 (X ; M)2>

The cumulative distribution function (CDF) of a N(0, 1) distribution,

d(x)=P(X < x)= /_X d(x)dx
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The Normal Distribution V\ofW\"L GW“I‘} 'ﬁ;nc.d-\\n,

x <- seq(—4,4,bz=0.1) /
plot(x,dnorfi(x),type="1",main = "The Standard Normal Distribution",
\——ﬁ

ylab=expression(paste(phi(x))))
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The Normal Distribution

plot(x <- seq(-2,2,by=0.1),pnorm(x),type="1",
xlab="x",ylab=expression(paste(Phi(x))),
main = "Standard Normal CDF")

Standard Normal CDF




The Normal Distribution

A random variable X that follows a normal distribution with mean y and

variance o2 will be denoted by TS
X (1)
~ w,o°). - .
Cyasient
If Y ~ N (,0%) then
Z ~ N(0,1),
where v
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The Normal Distribution
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X ~ N(5,3). Use R to find P(4 < X < 6).
pnorm(6,mean = 5,sd = sqrt(3))-pnorm(4,mean = 5,sd = sqrt(3))

## [1] 0.436297
Cuwwlafive dest ’Rﬂ\cvhw\
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Normal Quantile Plots

The following data are the weights from 11 tomato plants.
## [1] 29.9 11.4 26.6 23.7 25.3 28.5 14.2 17.9 16.5 21.1 24.3

Do the weights follow a Normal distribution?



Normal Quantile Plots M@\Q\S \V\As‘cu)‘-’vl
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A normal quantile plot in R can be obtained using qqnorm() for the normal&’fm
probability plot and qqline() to add the straight line. (;‘\f“"?)w'
qgnorm(tomato.data$pounds); gqline(tomato.data$pounds) e
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Central Limit Theorem

The central limit theorem states that if Xi, Xz, ... is an independent sequence of
identically distributed random variables with mean p = E(X;) and variance
o2 = Var(X;) then

where X = >, Xi/n and ®(x) is the standard normal CDF. This means that
the distribution of X is approximately N (/L, %—L)
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Example: A in is flipped 50 times. What is the distribution of the average
number of heads?

— =

o= 5_0
5o :_QLS.;L

\fdw'(% 1 > - \ er@_‘@;) > bl

—

=l .5—07/
So L L SNy = A Serstt



%ji%c ~ N(DQG) @"EX.S__>

So So
\\

Pra@o«%bv\ 54 \f\eo\..lb LN SO ’\'0556_5 o SN

%\\\/‘ QO:\ V\ <



Central Limit Theorem . S\M\ms

set.seed(100)
Total.heads <- rbinom(100,50,0.5); Ave.heads <- Total.heads@D
hist(Ave.heads, main = "Distribution - Average Number of Heads")

Distribution — Average Number of Heads
loo Swulehdnd oF 5, Gawm Fossef (o [Fue Cn.n).

o _

2
>
3 |
&

o
© |
O_C\l
()
© |
L

O—I— —

0.45 0.55 0.65

Ave.heads



Central Limit Theorem

set.seed(100)

x<- rbinom(100,50,0.5)/50 # draw a sample of 100 from bin (50, .5)
h <- hist(x, main = "", ) # create the histogram

# superimpoise mnormal density over histogram

xfit<-seq(min(x) ,max(x),length=40)

yfit <- dnorm(xfit,mean = .5,sd = sqrt((.5*.5)/50))

yfit <- yfit*diff (h$mids[1:2])*length(x)

lines(xfit,yfit)
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Chi-Square Distribution

Let Xi, Xz, ..., X, be independent and identically distributed random variables
that have a N(0, 1) distribution. The distribution of

n
E 2

Xi ’
i=1

has a chi-square distribution on n degrees of freedom or x2.

The mean of a x2 is n with variance 2n.



Chi-Square Distribution

Let Xi, X2, ..., X, be independent with a N(u,o?) distribution. What is the
distribution of the sample variance $* = "7 (X; — X)?/(n— 1)?
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t Distribution

If X ~ N(0,1) and W ~ x? then the distribution of —X— has a t distribution

A/ W/n

X

\/W/n

on n degrees of freedom or ~ tp.
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Let Xi, Xz, ... is an independent sequence of identically distributed random
variables that have a N(0, 1) distribution. What is the distribution of

X—nr £ lesyxr SiruWNe.
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t Distribution

Density
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F Distribution
Let X ~ x% and Y ~ x?2 be independent. The distribution of (ﬁ
\’wuaftbr
_X/m Ve
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where Fn, , denotes the F distribution on m, n degrees of freedom. The F
distribution is right skewed (see graph below). For n > 2, E(W) = n/(n—2). It
also follows that the square of a t, random variable follows an Fi ,.
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Linear Regression

Lea (1965) discussed the relationship between mean annual temperature and
mortality index for a type of breast cancer in women taken from regions in
Europe (example from Wu and Hammada).

The data is shown below.

#Breast Cancer data

M <- ¢(102.5, 104.5, 100.4, 95.9, 87.0, 95.0, 88.6, 89.2,
78.9, 84.6, 81.7, 72.2, 65.1, 68.1, 67.3, 52.5)

T <-(c{51.3, 49.9, 50.0,49.2, 48.5, 47.8, 47.3, 45.1,
46.3, 42.1, 44.2, 43.5, 42.3, 40.2, 31.8, 34.0)



Linear Regression

A linear regression model of mortality versus temperature is obtained by
estimating the intercept and slope in the equation:

Yi=pPo+ Pixi+e,i=1,..,n

where ¢; ~ N(0,0?). The values of 8o, 81 that minimize the sum of squares

Al <o
L-(\ )ﬁb Z — (Bo + Brxi) Q 3T5° aL

20
are called the least squares estimators. They are given by: )\{5
v
- 5 = o~
> fo = y - bx %’\v\-g_‘
> b= rs—y ’\"
r is the correlation between y and x, and Sk, S, are the sample standard ~

deviations of x and y respectively. v(



Linear Regression
plot(T,M,xlab="temperature",ylab="mortality index")
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Linear Regressionr_’ Q_LBTQS S of Ton M

regl <- M~T)

summar re arameter estimates an a @
y(regl) # P t timat d ANOVA tabl

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call: \5~°’ ¢ dapunduny o xv\A;.PU\&‘\A’ Vawrraldy
Im(formula = M ~ T) \9~ ™~ Dt\ "\'3(1—'
Residuals:
Min 1Q Median 3Q Max
-12.8358 -5.6319 0.4904 4.3981 14.1200 )
o P(a:(éa \"So\\
-~
Coefficients: ﬁé )(, i<
i @ Error t vall.yé;(>|t|) - \-’c
(Intercept)21. 15.6719 -1.391  0.186 o -
T 0.3489 6.758 9.2e-06 *xx*
Signif. codes: O '*xx' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error:

.545 on 14 degrees of freedom *..’\l"ﬂ‘
Adjusted R-squared: 0.7486 VWB‘\,.;\MA‘
{14 DF, p-value: 9.202e-06 . Xt
¥ ol Veriaan T RS

Multiple R-squared:
F-statistic: 45.67 on
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Linear Regression
plot(T,M,xlab="temperature",ylab="mortality index")
abline(regl) # Add regression line to the plot

mortality index
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Linear Regression \% )%N.,vt ot W
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#plot restiduals vs. fitted w \L’\*\{Q\“
plot(regl$fitted,regl$residuals) ; 0/(, ?°6"'
abline(h=0) # add horizontal line at O

(@)
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reg1$residuals
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Linear Regression 'P,_\r oa\eB- o

#check normality of residuals '\Iw\f& ?”a\l\duA
norm(regl$residuals) ; line(regl$residuals)
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Linear Regression
If there is more than one independent variable then the above model is called a
multiple linear regression model.

Yi = Po + Bixir + Baxio + -+ Buxik +€i, i =1,...,n,

where ¢; ~ N(0,0?).

This can also be expressed in matrix notation as
NERE S

7«7- UKy RV

y=XB+e :

Ly 0V

The least squares estimator is

1XTy.
la'd

5= (x7X)"

. . 5. -1 . .
The covariance matrix of 3 is (XTX) o2. An estimator of o2 is

o 1 ¢ 12
4 _n_k;(yl .y’)7

where §; = BO + le,-l 44 ,3kx,-k is the predicted value of y;.



Weighing Problem

/ r‘\:jk’r

[#hon

Harold Hotelling in 1949 wrote a paper on how to obtain more accurate
weighings through experimental design.

Method 1

Weigh each apple separately.
Method 2

Obtain two weighings by

1. Weighing two apples in one pan.
2. Weighing one apple in one pan and the other apple in the other pan
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Let wi, wy be the weights of apples one and two. Each weighing has standard
error o. So the precision of the estimates from method 1 is o.

If the objects are weighed together in one pan, resulting in measurement my,
then in opposite pans, resulting in measurement my, we have two equations for

the unknown weights wi, ws:

™MAWm = AW

wi+we =m ~ o W\ -
S faaaiae
wip — W = mp '1/

Vﬂ\fR&(BS Vhf(w_’\) 'V"\\,"'ML = 2o
-2
L — L™
""\'KG *T >L )w'zf’ ,__W;—/"l
_ ¢ /L ~ 2



Weighing Problem

This can also be viewed as a linear regression problem y = X + €:

= (my, m)’ = (1 1 > = (w1, wa)'.
N % M«.Sun.vuwi 1. LePh
&.

AKA WS vrenant - Bght
PAVL -



Weighing Problem
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The least-squares estimates can be found using R.

#step-by-step matriz mutiplication example for weighing problem
Srrans pSC

X <{ matrix(c(1,1,1,-1),nrow=2,ncol=2) #define X matriz $—

Y <-YedX)U*%X # multiply X°T by X (X"T*#X) NB: t(X) is transpose of X

W <- solve(Y) # calculate the inverse —

W %% £ # calculote (XTHD "(-DXT §— Yok Po lnmada)t
it [,1] [,2] NeR WA AN e
## [1,170.5 0.5 " > - &‘_5

## [2,1( 0.5 -0.5 My

W # print (X"T*X) ~(-1) for SE

#H [,1]1 [,2] ~
## [1,][0.5 o.o]c-\.: S.e (S)

## [2,]1] 0.0 0.5 SC(\:’\L)



