STA305/1004 - Class 4

Septeber 17, 2019



Today's Class

» Hypothesis testing via randomization
» Two-sample t-test
> Paired t-test



Example: Wheat Yield

Assigning treatments randomly avoids any pre-experimental bias.
12 playing cards, 6 red, 6 black were shuffled (7 times??) and dealt
1st card black — 15! plot gets B

2nd card red — 2™? plot gets A

3rd card black — 3 plot gets B

v vV v v v Vv

Completely randomized design



Wheat Yield Example

B269 | A11.4 | B26.6 | A23.7 | B253 | B 285
B142 | A179 | A165 | A21.1 | B243 | A19.6

» Evidence that fertilizer type is a source of yield variation?

» Evidence about differences between two populations is generally measured
by comparing summary statistics across two sample populations.

» A statistic is any computable function of the observed data.



Wheat Yield Study
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Wheat Yield Study

summary (yA) ; sd(yA);quantile(yA,prob=c(0.25,0.75))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
##  11.40 16.85 18.75 18.37 20.73 23.70
## [1] 4.234934

#i# 259, 75%
## 16.850 20.725

summary (yB) ; sd(yB); quantile(yB,prob=c(0.25,0.75))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 14.20 24.55 25.95 24.30 26.82 28.50
## [1] 5.151699

#it 25% 75%
## 24.550 26.825



Results

mean (yA) -mean (yB)

## [1] -5.933333

> So there is a moderate/large difference in mean yield for these fertilizers.
» Would you recommend B over A for future plantings?

» Do you think these results generalize to a larger population?

» Could the result be due to chance?



Hypothesis Testing Via Randomization

» Are the observed differences in yield due to fertilizer type?
» Are the observed differences in yield due to plot-to-plot variation?



Hypothesis Testing Via Randomization

Hypothesis tests:
» H, (null hypothesis): Fertilizer type does not affect yield.
> H, (alternative hypothesis): Fertilizer type does affect yield.

> A statistical hypothesis evaluates the compatibility of H;, with the data



Test Statistics and Null Distributions

We can evaluate H, by answering:
> Is a mean difference of -5.93 plausible/probable if HO true?

» Is a mean difference of -5.93 large compared to experimental noise?



Test Statistics and Null Distributions

» Compare y, — y,=-5.93 (observed difference in the experiment) to values
of y, — y, that could have been observed if H, were true.

» Hypothetical values of y, — ¥, that could have been observed under H,,
are referred to as samples from the null distribution.



Test Statistics and Null Distributions

> Yy, — Y is a function of the outcome of the experiment.

» If a different experiment were performed then we would obtain a diffrent
value of y, — -



Test Statistics and Null Distributions

» In this experiment we observed y, — 4,=-5.93.
» If there was no difference between fertilizers then what other possible
values of y, — ¥y, could have been observed?



Experimental Procedure and Potential Outcomes

The cards were shuffled and we were dealt B, R, B, R, ..

Under this treatment assignment we ob
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Experimental Procedure and Potential Outcomes

Another potential treatment assignment under H,; is:

BI/A|B|B|AJA
A|B|B|A|A|B

The yields obtained under this assignment are:

B269 | A11.4 | B26.6 | B23.7 | A253 | A285
Al142 | B179 | B165 | A21.1 | A243 | B19.6

This data could occur if the experiment were run again.




Experimental Procedure and Potential Outcomes

Observed treatment assignment:

B269 | A11.4 | B26.6 | A23.7 | B253 | B 285
B142 | A179 | A165 | A21.1 | B243 | A19.6

Potential treatment assignment:

B269 | A114 | B266 | B23.7 | A253 | A285
Al42 | B179 | B165 | A21.1 | A243 | B19.6

Question: What is the difference between the observed and potential treatment
assignments?



Experimental Procedure and Potential Outcomes

» Under this hypothetical assignment the mean difference is:
yA <- c(11.4,25.3,28.5,14.2,21.1,24.3)
yB <- ¢(26.9,26.6,23.7,17.9,16.5,19.6)
mean(yA) - mean(yB)
## [1] -1.066667
This represents an outcome of the experiment in a universe where:
1. The treatment assignment is B, A, B, B, A, A, A, B, B, A A/ B

2. Hyis true (i.e., py = pig, Where p14, ip are the mean yields of fertilizers A
and B).



The Null distribution

» What potential outcomes could we see if H is true?
» Compute y, — ¥, for each possible treatment assignment.



The Null Distribution

» For each treatment assignment compute
0; =Yg — Yprt =1,2,...,924.

» {0;,09,...,0904} enumerates all pre-randomisation outcomes assuming no
treatment effect.

» Since each treatment assignment is equally likely under the null
distribution, a probability distribution of experimental results if H is true
can be described as

ﬁ(y) _ #(%‘,2§ )
S 16, <)
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This is called the randomisation distribution.



Randomization Distribution

» The yield is not random since the plots were not chosen randomly.
» Their assignment to treatments is random.

» The basis for building a probability distribution for 3, — 3, comes from the
randomization of fertilizers to plots.



Randomization Distribution

» This randomization results in 6 plots getting fertilizer A and the remaining
6 plots receiving fertilizer B.

> This is one of (1) = 924 equally likely randomizations that could have
occured.



Experimental Procedure and Potential Outcomes

This represents an outcome of the experiment in a universe where:
1. H is true.
2. The yield will be the same regardless of which fertilizer a plot received.

For example a plot that had a yield of 26.9 given fertilizer B would have the
same yield if the plot received fertilizer A if H is true.



R Code for Randomization Distribution

yA <- c(11.4,23.7,17.9,16.5,21.1,19.6)

yB <- ¢(26.9,26.6,25.3,28.5,14.2,24.3)

fert <- c(yA,yB); N <- choose(12,6)

res <- numeric(N) # store the results

index <-combn(1:12,6) #Generate N treatment assignments
for (i in 1:N)

{res[i] <- mean(fert([index[,i]]) -mean(fert[-index[,i]])}
index[,1:2] #output first two randomizations

#i#t [,11 [,2]
## [1,] 1 1
## [2,] 2 2
## [3,] 3 3
## [4,] 4 4
## [5,] 5 5
## [6,] 6 7

res[1:2] #output first two mean diffs

## [1] -5.933333 -3.500000



Computational Note: Vectorized Coding/Functional Programming

ml <- function(){ # Vectorized wersion

}

f <- function(index){mean(fert[index]) - mean(fert[-index])}
index <- combn(1:12,6)

y <- lapply(1:924, function(x) index[,x])

z <- lapply(y,f)

return(z)

system.time(m1())

##
##

user system elapsed
0.008 0.000 0.009

m2 <- function() { #non-vectorized version

}

res <- numeric(N) # store the results

index <- combn(1:12,6) #Generate N treatment assignments
for (i in 1:N)

{res[i] <- mean(fert[index[,i]]) - mean(fert[-index[,ill)}
return(res)

system.time(m2())

## user system elapsed
## 0.013 0.000 0.013



Randomization Distribution

Randomization Distribution of difference in means
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Hypothesis Testing

» |s there any contradiction between H; and the observed data?
» A P-value is the probability, under the null hypothesis of obtaining a more
extreme than the observed result.

P-value = P (§ < —5.93) = F|(—5.93)

» A small P-value implies evidence against null hypothesis.

» If the P-value is large does this imply that the null is true?



Randomization Test

Assume H,, is true.

Calculate the difference in means for every possible way to split the data
into two samples of size 6.

This would result in (‘) = 924 differences.

Calculate the probability of observing a value as extreme of more extreme
than the observed value of the test statistic (P-value).

If the P-value is small then there are two possible explanations:
An unlikely value of the statistic has occurred, or
The assumption that H, is true is incorrect.

If the P-value is large then the hypothesis test is inconclusive.



Computing the P-value

The observed value of the test statistic is -5.93. So, the p-value is

# of times walues from the mean randomization distribution
# less than observed value
sum(res<=observed)

## [1] 26

N # Number of randomizations

## [1] 924

pval <- sum(res<=observed)/N # Randomization p value
round(pval,2)

## [1] 0.03



Interpretation of P-value

» A p-value of 0.03 can be interpreted as: assume there is no difference in
yield between fertilizers A and B then the proportion of randomizations
that would produce an observed mean difference between A and B of at
most -5.93 is 0.03.

» In other words, under the assumption that there is no difference between A
and B only 3% of randomizations would produce an extreme or more
extreme difference than the observed mean difference.

> Therefore it's unlikely (if we consider 3% unlikely) that an observed mean
difference as extreme or more extreme than -5.93 would be observed if

Ha = HB-



Two-Sided Randomization P value

» If we are using a two-sided alternative then how do we calculate a p-value?

» The randomization distribution may not be symmetric so there is no
justifcation for simply doubling the probability in one tail.

Let

)

be the mean of the randomization distribution then we can define the two-sided

p-value as
<NN“)[ to— > =7
PT 1] 2 | 7] 1) = Y A=l 22T
i=1 NA)

The probability of obtaining an observed value of the test statistic as far, or
farther, from the mean of the randomization distribution.



Two-Sided Randomization P value

yA <- c(11.4,23.7,17.9,16.5,21.1,19.6)
yB <- ¢(26.9,26.6,25.3,28.5,14.2,24.3)
fert <- c(yA,yB) #pool data
N <- choose(12,6)
res <- numeric(N) # store the results
index <-combn(1:12,6)
for (i in 1:N)
{
res[i] <- mean(fert[index[,i]])-mean(fert[-index[,il])
}
tbar <- mean(res)
pval <- sum(abs(res-tbar)>=abs(observed-tbar))/N
round(pval,2)

## [1] 0.06



Randomization Test

» We could calculate the difference in means for every possible way to split
the data into two samples of size 6.

> This would result in (1) = 924 differences.

» If there were 30 observations split evenly into two groups then there are
(39) = 155,117, 520 differences.

» So unless the sample sizes are small these exhaustive calculations are not
practical.



Randomization Test

Instead we can create a permutation resample (Monte Carlo Sampling).

1.

2
3
4.
5

Draw 6 observations from the pooled data without replacement. (fert A)

. The remaining 6 observations will be the second sample (fert B)

. Calculate the difference in means of the two samples

Repeat 1-3 at least 250000 times.

. P-value is the fraction of times the random statistics exceeds the original

statistic.



Estimate P-value via Monte Carlo Sampling

If M test statistics, ¢, i = 1,..., M are randomly sampled from the permutation
distribution, a one-sided Monte Carlo p value for a test of H, : ur = 0 versus
H,:pp>0is

R 1+Zﬁ11(ti2t*)
b= M+1

Including the observed value t* there are M + 1 test statistics.



Estimate P-value via Monte Carlo Sampling

N <- 250000 # number of times to Tepeat this process
result <- numeric(N) # space to save random diffs.
for (i in 1:N)
{ #sample of size 6, from 1 to 12, without replacement
index <- sample(12,size=6,replace=F)
result[i] <- mean(fert[index])-mean(fert[-index])

}

#store observed mean difference
observed <- mean(yA)-mean(yB)

#P-value - mean - results will vary
pval <- (sum(result <= observed)+1)/(N+1)
round(pval,4)

## [1] 0.0283



Basic Decision Theory

H, True H, False
Accept H,, | correct type Il error
Reject H, | type | error | correct

P-value = P (test statistic > observed value of test statistic)

1— 8 = power

a = P (type | error)
B = P (type Il error)



The Randomization P-value

» An achievable P-value of the randomization test must be a multiple of
(1% = g5, where k =1,2,...,924.

> If we choose a significance level of a = 4%, that is one of the achievable
P-values then P (type | error) = a.

» The randomization test is an exact test.

> If a is not chosen to be one of the achievable P-values but oo = &, is the

largest acheivable P-value less than « then P (type | error) < a.



Choosing a Test Statistic

A test statistic should be able to differentiate between H, and H, in ways that
are scientifically relevant.



Other Test Statistics

> Other test statistics could be used instead of 7' =Y, — Y to measure the
effectiveness of fertilizer A.

» The difference in group medians

median(Y,) — median(Yp)

or trimmed means are examples of other test statistics.



Other Test Statistics

The randomiztion distribution of the difference in group medians can be
obtained by modifying the R code used for the difference in group means.
fert <- c(yA,yB) #pool data
N <- choose(12,6)
res <- numeric(N) # store the results
index <-combn(1:12,6) # Generate N treatment assignments
for (i in 1:N)
{
res[i] <- median(fert[index[,i]])-median(fert[-index[,i]])

}



Other Test Statistics

Randomization Distribution of difference in medians
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Other Test Statistics

The p-value of the randomization test can be calculated

# of times walues from the median randomization
# distribution less than observed wvalue
sum(res<=observed)

## [1] 36

N # Number of randomizations

## [1] 924

pval <- sum(res<=observed)/N # Randomization p value
round(pval,2)

## [1] 0.04



The two-sample t-test

If the two wheat yield samples are independent random samples from a normal
distribution with means 14 and pg but the same variance then the statistic

Ya— Uy~ N (pa—pp,0*(1/ny +1/ng)).
So,

Ya—Yp—90
o/ (1/ny+1/np)

~ N(0,1),

where 6 = iy — .

If we substitute

S Wia —Ya) + 20 (Yip — Up)

S2 =
Ny +ng—2

for o2 then

Ya—Yp— 90 ot
sy/(Ufng+ ng) "

is called the two sample t-statistic.



The two-sample t-test

In the wheat yield example H : u4 = pup and suppose that H; : 1y < ug. The
p-value of the test is obtained by calculating the observed value of the two
sample t-statistic under H,.

G — 18.37 — 24.3
= Ya — Yo ~2.18

T s/ na tjng)  472/(1/6 1 1/6)

The p-value is P(t;3 < —2.18) = 0.03.

The calculation was done in R.

s <- sqrt((5*var(yA)+5*var (yB))/10)
tstar <- (mean(yA)-mean(yB))/(s*sqrt(1/6+1/6)); round(tstar,2)

## [1] -2.18
pval <- pt(tstar,10); round(pval,5)

## [1] 0.02715



The two-sample t-test

In R the command to run a two-sample t-test is t.test ().

t.test(yA,yB,var.equal = TRUE,alternative = "less")

##

## Two Sample t-test

#i#

## data: yA and yB

## t = -2.1793, df = 10, p-value = 0.02715
## alternative hypothesis: true difference in means is less than O
## 95 percent confidence interval:

#i# -Inf -0.9987621

## sample estimates:

## mean of x mean of y

## 18.36667 24.30000



The two-sample t-test

The assumption of normality can be checked using normal quantile plots,
although the t-test is robust against non-normality.

qqnorm(yA,main = "Fertilizer A");qqline(yA)

Sample Quantiles
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The two-sample t-test

qgnorm(yB,main =

"Fertilizer

B");qqline(yB)

Fertilizer B
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Two-Sample t-test versus Randomization Test

» The p-value from the randomization test and the p-value from two-sample
t-test are almost identical.

» The randomization test does not depend on normality or independence.



Two-Sample t-test versus Randomization Test

» The randomization test does depend on Fisher's concept that after
randomization, if the null hypothesis is true, the two results obtained from

each particular plot will be exchangeable.

» The randomization test tells you what you could say if exchangeability
were true.



Paired Comparisons

» Increase precision by making comparisons within matched pairs of
experimental material.

» Randomize within a pair.



Boy's Shoe Experiment

» Two materials to make boy's shoes, A and B, are tested to evaluate if B is
more sturdy compared to A.

» During the experimental test some boys scuffed their shoes more than
others.

» Each boy's two shoes were subjected to the same treatment by having
each boy wear both materials.

» Working with 10 differences B-A most of the boy-to-boy variation could be
eliminated.

» Called a randomized paired comparison design.



Boy's Shoe Experiment

> Toss a coin to randomize material to L/R foot of a boy.
» Head: Material A used on right foot.

» Null hypothesis: amount of wear associated with material A and B are the
same.

» So labelling given to a pair of results only affects the sign of the difference.



Randomized paired comparison

library (BHH2)
data(shoes.data)
shoes.data

## boy matA sideA matB sideB

## 1 113.2 L 14.0 R
## 2 2 8.2 L 8.8 R
## 3 3 10.9 R 11.2 L
## 4 4 14.3 L 14.2 R
## 5 5 10.7 R 11.8 L
## 6 6 6.6 L 6.4 R
## 7 7 9.5 L 9.8 R
## 8 8 10.8 L 11.3 R
## 9 9 8.8 R 9.3 L
## 10 10 13.3 L 13.6 R



Randomized paired comparison
plot(shoes.data$boy,shoes.data$matA,pch=16,cex=1.5,
xlab="Boy",ylab="Wear")
points(shoes.data$boy,shoes.data$matB,pch=17,cex=1.5)
legend("bottomright",legend=c("Material A","Material B"),pch=c(16,17))
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Randomized paired comparison

diff <- shoes.data$matA-shoes.data$matB
meandiff <- mean(diff); meandiff

## [1] -0.41

shoe.dat2 <- data.frame(shoes.data,diff)
shoe.dat2

## boy matA sideA matB sideB diff

## 1 113.2 L 14.0 R -0.8
## 2 2 8.2 L 8.8 R -0.6
## 3 3 10.9 R 11.2 L -0.3
## 4 4 14.3 L 14.2 R 0.1
## 5 5 10.7 R 11.8 L -1.1
## 6 6 6.6 L 6.4 R 0.2
## 7 7 9.5 L 9.8 R -0.3
## 8 8 10.8 L 11.3 R -0.5
## 9 9 8.8 R 9.3 L -0.5
## 10 10 13.3 L 13.6 R -0.3



Boy's Shoe Experiment

> The sequence of coin tosses is one of 2! = 1024 equiprobable outcomes.

» To test H, the average difference of -0.41 observed observed can be
compared with the other 1023 averages by calculating the average
difference for each of 1024 arrangements of signs in:

+0.8+£0.6--£0.3

d=
10




Randomized paired comparison

N <- 27(10) # number of treatment assignments

res <- numeric(N) #vector to store results

LR <- list(c(-1,1)) # difference is multiplied by -1 or 1
# generate all possible treatment assign

trtassign <- expand.grid(rep(LR, 10))

for(i in 1:M){

res[i] <- mean(as.numeric(trtassign([i,])*diff)
}

trtassign[1:2,]

## Varl Var2 Var3 Var4 Varb5 Var6 Var7 Var8 Var9 VarlO

## 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 2 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
res[1:2]

## [1] 0.41 0.25



Randomized paired comparison
hist(res, xlab="Mean Difference",main="Randomization Distribution Boys'
abline(v = meandiff,col="blue")

Randomization Distribution Boys' Shoes
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Randomized paired comparison

sum(res<=meandiff) # number of differences le observed diff

## [11 7

sum(res<=meandiff) /N # p-value

## [1] 0.006835938



Paired t-test

If we assume that the differences -0.8, -0.6, -0.3, 0.1, -1.1, 0.2, -0.3, -0.5, -0.5,
-0.3 are a random sample from a normal distribution then the statistic

d
= ~ty 1,
s;/vio O

where, s; is the sample standard deviation of the paired differences. The
p-value for testing if D < 0 is

Pty < t).



Paired t-test

In general if there are n differences then

__4d
sg/vn

where, s; is the sample standard deviation of the paired differences. The
p-value for testing if D < 0 is

t t

n—1>

P(t,_, <t).

NB: This is the same as a one-sample t-test of the differences.



Paired t-test

In R a paired t-test can be obtained by using the command t.test() with

paired=T.

t.test(shoes.data$math,shoes.data$matB,paired = TRUE,
alternative = "less")

##

## Paired t-test

##

## data: shoes.data$matd and shoes.data$matB

## t = -3.3489, df = 9, p-value = 0.004269

## alternative hypothesis: true difference in means is less than O
## 95 percent confidence interval:

#i# -Inf -0.1855736

## sample estimates:

## mean of the differences

## -0.41



Paired t-test

This is the same as a one-sample t-test on the difference.

# same as a one-sample t-test on the diff
t.test(diff,alternative = "less")

##

## One Sample t-test

#i#

## data: diff

## t = -3.3489, df = 9, p-value = 0.004269
## alternative hypothesis: true mean is less than O
## 95 percent confidence interval:

## -Inf -0.1855736

## sample estimates:

## mean of x

#i# -0.41



Paired t-test

qgnorm(diff); qqline(diff)

Normal Q-Q Plot
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