
STA305/1004 - Class 4

Septeber 17, 2019



Today’s Class

▶ Hypothesis testing via randomization
▶ Two-sample t-test
▶ Paired t-test



Example: Wheat Yield

▶ Assigning treatments randomly avoids any pre-experimental bias.
▶ 12 playing cards, 6 red, 6 black were shuffled (7 times??) and dealt
▶ 1st card black → 1𝑠𝑡 plot gets B
▶ 2nd card red → 2𝑛𝑑 plot gets A
▶ 3rd card black → 3𝑟𝑑 plot gets B
▶ Completely randomized design



Wheat Yield Example

B 26.9 A 11.4 B 26.6 A 23.7 B 25.3 B 28.5
B 14.2 A 17.9 A 16.5 A 21.1 B 24.3 A 19.6

▶ Evidence that fertilizer type is a source of yield variation?
▶ Evidence about differences between two populations is generally measured

by comparing summary statistics across two sample populations.
▶ A statistic is any computable function of the observed data.



Wheat Yield Study
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Wheat Yield Study

summary(yA); sd(yA);quantile(yA,prob=c(0.25,0.75))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11.40 16.85 18.75 18.37 20.73 23.70

## [1] 4.234934

## 25% 75%
## 16.850 20.725
summary(yB); sd(yB); quantile(yB,prob=c(0.25,0.75))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 14.20 24.55 25.95 24.30 26.82 28.50

## [1] 5.151699

## 25% 75%
## 24.550 26.825



Results

mean(yA)-mean(yB)

## [1] -5.933333

▶ So there is a moderate/large difference in mean yield for these fertilizers.
▶ Would you recommend B over A for future plantings?
▶ Do you think these results generalize to a larger population?
▶ Could the result be due to chance?



Hypothesis Testing Via Randomization

▶ Are the observed differences in yield due to fertilizer type?
▶ Are the observed differences in yield due to plot-to-plot variation?



Hypothesis Testing Via Randomization

Hypothesis tests:
▶ 𝐻0 (null hypothesis): Fertilizer type does not affect yield.
▶ 𝐻1 (alternative hypothesis): Fertilizer type does affect yield.
▶ A statistical hypothesis evaluates the compatibility of 𝐻0 with the data



Test Statistics and Null Distributions

We can evaluate 𝐻0 by answering:
▶ Is a mean difference of -5.93 plausible/probable if H0 true?
▶ Is a mean difference of -5.93 large compared to experimental noise?



Test Statistics and Null Distributions

▶ Compare ̄𝑦𝑎 − ̄𝑦𝑏=-5.93 (observed difference in the experiment) to values
of ̄𝑦𝑎 − ̄𝑦𝑏 that could have been observed if 𝐻0 were true.

▶ Hypothetical values of ̄𝑦𝑎 − ̄𝑦𝑏 that could have been observed under 𝐻0
are referred to as samples from the null distribution.



Test Statistics and Null Distributions

▶ ̄𝑦𝑎 − ̄𝑦𝑏 is a function of the outcome of the experiment.
▶ If a different experiment were performed then we would obtain a diffrent

value of ̄𝑦𝑎 − ̄𝑦𝑏.



Test Statistics and Null Distributions

▶ In this experiment we observed ̄𝑦𝑎 − ̄𝑦𝑏=-5.93.
▶ If there was no difference between fertilizers then what other possible

values of ̄𝑦𝑎 − ̄𝑦𝑏 could have been observed?



Experimental Procedure and Potential Outcomes

The cards were shuffled and we were dealt B, R, B, R, …
B A B A B B
B A A A B A

Under this treatment assignment we oberved the yields:
B 26.9 A 11.4 B 26.6 A 23.7 B 25.3 B 28.5
B 14.2 A 17.9 A 16.5 A 21.1 B 24.3 A 19.6



Experimental Procedure and Potential Outcomes

Another potential treatment assignment under 𝐻0 is:

B A B B A A
A B B A A B

The yields obtained under this assignment are:
B 26.9 A 11.4 B 26.6 B 23.7 A 25.3 A 28.5
A 14.2 B 17.9 B 16.5 A 21.1 A 24.3 B 19.6

This data could occur if the experiment were run again.



Experimental Procedure and Potential Outcomes

Observed treatment assignment:
B 26.9 A 11.4 B 26.6 A 23.7 B 25.3 B 28.5
B 14.2 A 17.9 A 16.5 A 21.1 B 24.3 A 19.6

Potential treatment assignment:
B 26.9 A 11.4 B 26.6 B 23.7 A 25.3 A 28.5
A 14.2 B 17.9 B 16.5 A 21.1 A 24.3 B 19.6

Question: What is the difference between the observed and potential treatment
assignments?



Experimental Procedure and Potential Outcomes

▶ Under this hypothetical assignment the mean difference is:
yA <- c(11.4,25.3,28.5,14.2,21.1,24.3)
yB <- c(26.9,26.6,23.7,17.9,16.5,19.6)
mean(yA) - mean(yB)

## [1] -1.066667

This represents an outcome of the experiment in a universe where:
1. The treatment assignment is B, A, B, B, A, A, A, B, B, A, A, B
2. 𝐻0 is true (i.e., 𝜇𝐴 = 𝜇𝐵, where 𝜇𝐴, 𝜇𝐵 are the mean yields of fertilizers A

and B).



The Null distribution

▶ What potential outcomes could we see if 𝐻0 is true?
▶ Compute ̄𝑦𝑎 − ̄𝑦𝑏 for each possible treatment assignment.



The Null Distribution

▶ For each treatment assignment compute

𝛿𝑖 = ̄𝑦𝑎 − ̄𝑦𝑏, 𝑖 = 1, 2, … , 924.
▶ {𝛿1, 𝛿2, … , 𝛿924} enumerates all pre-randomisation outcomes assuming no

treatment effect.
▶ Since each treatment assignment is equally likely under the null

distribution, a probability distribution of experimental results if 𝐻0 is true
can be described as

̂𝐹 (𝑦) = #(𝛿𝑖 ≤ 𝑦)
924

= ∑(126 )
𝑘=1 𝐼(𝛿𝑘 ≤ 𝑦)

(126 )

This is called the randomisation distribution.



Randomization Distribution

▶ The yield is not random since the plots were not chosen randomly.
▶ Their assignment to treatments is random.
▶ The basis for building a probability distribution for ̄𝑦𝑎 − ̄𝑦𝑏 comes from the

randomization of fertilizers to plots.



Randomization Distribution

▶ This randomization results in 6 plots getting fertilizer A and the remaining
6 plots receiving fertilizer B.

▶ This is one of (126 ) = 924 equally likely randomizations that could have
occured.



Experimental Procedure and Potential Outcomes

This represents an outcome of the experiment in a universe where:
1. 𝐻0 is true.
2. The yield will be the same regardless of which fertilizer a plot received.

For example a plot that had a yield of 26.9 given fertilizer B would have the
same yield if the plot received fertilizer A if 𝐻0 is true.



R Code for Randomization Distribution

yA <- c(11.4,23.7,17.9,16.5,21.1,19.6)
yB <- c(26.9,26.6,25.3,28.5,14.2,24.3)
fert <- c(yA,yB); N <- choose(12,6)
res <- numeric(N) # store the results
index <-combn(1:12,6) #Generate N treatment assignments
for (i in 1:N)
{res[i] <- mean(fert[index[,i]])-mean(fert[-index[,i]])}
index[,1:2] #output first two randomizations

## [,1] [,2]
## [1,] 1 1
## [2,] 2 2
## [3,] 3 3
## [4,] 4 4
## [5,] 5 5
## [6,] 6 7
res[1:2] #output first two mean diffs

## [1] -5.933333 -3.500000



Computational Note: Vectorized Coding/Functional Programming
m1 <- function(){ # Vectorized version

f <- function(index){mean(fert[index]) - mean(fert[-index])}
index <- combn(1:12,6)
y <- lapply(1:924, function(x) index[,x])
z <- lapply(y,f)
return(z)

}
system.time(m1())

## user system elapsed
## 0.008 0.000 0.009
m2 <- function() { #non-vectorized version

res <- numeric(N) # store the results
index <- combn(1:12,6) #Generate N treatment assignments
for (i in 1:N)
{res[i] <- mean(fert[index[,i]]) - mean(fert[-index[,i]])}
return(res)

}
system.time(m2())

## user system elapsed
## 0.013 0.000 0.013



Randomization Distribution

Randomization Distribution of difference in means
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Hypothesis Testing

▶ Is there any contradiction between 𝐻0 and the observed data?
▶ A P-value is the probability, under the null hypothesis of obtaining a more

extreme than the observed result.

P-value = 𝑃 (𝛿 ≤ −5.93) = ̂𝐹 (−5.93)

▶ A small P-value implies evidence against null hypothesis.
▶ If the P-value is large does this imply that the null is true?



Randomization Test

▶ Assume 𝐻0 is true.
▶ Calculate the difference in means for every possible way to split the data

into two samples of size 6.
▶ This would result in (126 ) = 924 differences.
▶ Calculate the probability of observing a value as extreme of more extreme

than the observed value of the test statistic (P-value).
▶ If the P-value is small then there are two possible explanations:
1. An unlikely value of the statistic has occurred, or
2. The assumption that 𝐻0 is true is incorrect.
▶ If the P-value is large then the hypothesis test is inconclusive.



Computing the P-value

The observed value of the test statistic is -5.93. So, the p-value is
# of times values from the mean randomization distribution
# less than observed value
sum(res<=observed)

## [1] 26
N # Number of randomizations

## [1] 924
pval <- sum(res<=observed)/N # Randomization p value
round(pval,2)

## [1] 0.03



Interpretation of P-value

▶ A p-value of 0.03 can be interpreted as: assume there is no difference in
yield between fertilizers A and B then the proportion of randomizations
that would produce an observed mean difference between A and B of at
most -5.93 is 0.03.

▶ In other words, under the assumption that there is no difference between A
and B only 3% of randomizations would produce an extreme or more
extreme difference than the observed mean difference.

▶ Therefore it’s unlikely (if we consider 3% unlikely) that an observed mean
difference as extreme or more extreme than -5.93 would be observed if
𝜇𝐴 = 𝜇𝐵.



Two-Sided Randomization P value

▶ If we are using a two-sided alternative then how do we calculate a p-value?
▶ The randomization distribution may not be symmetric so there is no

justifcation for simply doubling the probability in one tail.
Let

̄𝑡 = (1/( 𝑁
𝑁𝐴

))
( 𝑁𝑁𝐴)

∑
𝑖=1

𝑡𝑖

be the mean of the randomization distribution then we can define the two-sided
p-value as

𝑃(∣𝑇 − ̄𝑡∣ ≥ ∣𝑡∗ − ̄𝑡∣ |𝐻0) =
( 𝑁𝑁𝐴)

∑
𝑖=1

𝐼(∣𝑡𝑖 − ̄𝑡∣ ≥ ∣𝑡∗ − ̄𝑡∣)
( 𝑁𝑁𝐴) ,

The probability of obtaining an observed value of the test statistic as far, or
farther, from the mean of the randomization distribution.



Two-Sided Randomization P value

yA <- c(11.4,23.7,17.9,16.5,21.1,19.6)
yB <- c(26.9,26.6,25.3,28.5,14.2,24.3)
fert <- c(yA,yB) #pool data
N <- choose(12,6)
res <- numeric(N) # store the results
index <-combn(1:12,6)
for (i in 1:N)
{

res[i] <- mean(fert[index[,i]])-mean(fert[-index[,i]])
}
tbar <- mean(res)
pval <- sum(abs(res-tbar)>=abs(observed-tbar))/N
round(pval,2)

## [1] 0.06



Randomization Test

▶ We could calculate the difference in means for every possible way to split
the data into two samples of size 6.

▶ This would result in (126 ) = 924 differences.
▶ If there were 30 observations split evenly into two groups then there are

(3015) = 155, 117, 520 differences.
▶ So unless the sample sizes are small these exhaustive calculations are not

practical.



Randomization Test

Instead we can create a permutation resample (Monte Carlo Sampling).
1. Draw 6 observations from the pooled data without replacement. (fert A)
2. The remaining 6 observations will be the second sample (fert B)
3. Calculate the difference in means of the two samples
4. Repeat 1-3 at least 250000 times.
5. P-value is the fraction of times the random statistics exceeds the original

statistic.



Estimate P-value via Monte Carlo Sampling

If 𝑀 test statistics, 𝑡𝑖, 𝑖 = 1, ..., 𝑀 are randomly sampled from the permutation
distribution, a one-sided Monte Carlo p value for a test of 𝐻0 ∶ 𝜇𝑇 = 0 versus
𝐻1 ∶ 𝜇𝑇 > 0 is

̂𝑝 =
1 + ∑𝑀

𝑖=1 𝐼(𝑡𝑖 ≥ 𝑡∗)
𝑀 + 1 .

Including the observed value 𝑡∗ there are 𝑀 + 1 test statistics.



Estimate P-value via Monte Carlo Sampling

N <- 250000 # number of times to repeat this process
result <- numeric(N) # space to save random diffs.
for (i in 1:N)
{ #sample of size 6, from 1 to 12, without replacement

index <- sample(12,size=6,replace=F)
result[i] <- mean(fert[index])-mean(fert[-index])

}

#store observed mean difference
observed <- mean(yA)-mean(yB)

#P-value - mean - results will vary
pval <- (sum(result <= observed)+1)/(N+1)
round(pval,4)

## [1] 0.0283



Basic Decision Theory

𝐻0 True 𝐻0 False
Accept 𝐻0 correct type II error
Reject 𝐻0 type I error correct

P-value = 𝑃 (test statistic ≥ observed value of test statistic)

𝛼 = 𝑃 (type I error)
𝛽 = 𝑃 (type II error)

1 − 𝛽 = power



The Randomization P-value

▶ An achievable P-value of the randomization test must be a multiple of
𝑘

(126 ) = 𝑘
924 , where 𝑘 = 1, 2, … , 924.

▶ If we choose a significance level of 𝛼 = 𝑘
924 that is one of the achievable

P-values then 𝑃 (type I error) = 𝛼.
▶ The randomization test is an exact test.
▶ If 𝛼 is not chosen to be one of the achievable P-values but 𝛼 = 𝑘

924 is the
largest acheivable P-value less than 𝛼 then 𝑃 (type I error) < 𝛼.



Choosing a Test Statistic

A test statistic should be able to differentiate between 𝐻0 and 𝐻𝑎 in ways that
are scientifically relevant.



Other Test Statistics

▶ Other test statistics could be used instead of 𝑇 = ̄𝑌𝐴 − ̄𝑌𝐵 to measure the
effectiveness of fertilizer A.

▶ The difference in group medians

𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝐴) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝐵)

or trimmed means are examples of other test statistics.



Other Test Statistics

The randomiztion distribution of the difference in group medians can be
obtained by modifying the R code used for the difference in group means.
fert <- c(yA,yB) #pool data
N <- choose(12,6)
res <- numeric(N) # store the results
index <-combn(1:12,6) # Generate N treatment assignments
for (i in 1:N)
{

res[i] <- median(fert[index[,i]])-median(fert[-index[,i]])
}



Other Test Statistics

Randomization Distribution of difference in medians
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Other Test Statistics

The p-value of the randomization test can be calculated
# of times values from the median randomization
# distribution less than observed value
sum(res<=observed)

## [1] 36
N # Number of randomizations

## [1] 924
pval <- sum(res<=observed)/N # Randomization p value
round(pval,2)

## [1] 0.04



The two-sample t-test
If the two wheat yield samples are independent random samples from a normal
distribution with means 𝜇𝐴 and 𝜇𝐵 but the same variance then the statistic

̄𝑦𝐴 − ̄𝑦𝑏 ∼ 𝑁 (𝜇𝐴 − 𝜇𝐵, 𝜎2(1/𝑛𝐴 + 1/𝑛𝐵)) .

So,

̄𝑦𝐴 − ̄𝑦𝑏 − 𝛿
𝜎√(1/𝑛𝐴 + 1/𝑛𝐵)

∼ 𝑁(0, 1),

where 𝛿 = 𝜇𝐴 − 𝜇𝐵.
If we substitute

𝑆2 =
∑𝑛𝐴

𝑖=1(𝑦𝑖𝐴 − ̄𝑦𝐴) + ∑𝑛𝐵
𝑖=1(𝑦𝑖𝐵 − ̄𝑦𝐵)

𝑛𝐴 + 𝑛𝐵 − 2

for 𝜎2 then

̄𝑦𝐴 − ̄𝑦𝑏 − 𝛿
𝑠√(1/𝑛𝐴 + 1/𝑛𝐵)

∼ 𝑡𝑛𝐴+𝑛𝐵−2,

is called the two sample t-statistic.



The two-sample t-test

In the wheat yield example 𝐻0 ∶ 𝜇𝐴 = 𝜇𝐵 and suppose that 𝐻1 ∶ 𝜇𝐴 < 𝜇𝐵. The
p-value of the test is obtained by calculating the observed value of the two
sample t-statistic under 𝐻0.

𝑡∗ = ̄𝑦𝐴 − ̄𝑦𝑏
𝑠√(1/𝑛𝐴 + 1/𝑛𝐵)

= 18.37 − 24.3
4.72√(1/6 + 1/6)

= −2.18

The p-value is 𝑃(𝑡18 < −2.18) = 0.03.
The calculation was done in R.
s <- sqrt((5*var(yA)+5*var(yB))/10)
tstar <- (mean(yA)-mean(yB))/(s*sqrt(1/6+1/6)); round(tstar,2)

## [1] -2.18
pval <- pt(tstar,10); round(pval,5)

## [1] 0.02715



The two-sample t-test

In R the command to run a two-sample t-test is t.test().
t.test(yA,yB,var.equal = TRUE,alternative = "less")

##
## Two Sample t-test
##
## data: yA and yB
## t = -2.1793, df = 10, p-value = 0.02715
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -0.9987621
## sample estimates:
## mean of x mean of y
## 18.36667 24.30000



The two-sample t-test
The assumption of normality can be checked using normal quantile plots,
although the t-test is robust against non-normality.
qqnorm(yA,main = "Fertilizer A");qqline(yA)
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The two-sample t-test
qqnorm(yB,main = "Fertilizer B");qqline(yB)
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Two-Sample t-test versus Randomization Test

▶ The p-value from the randomization test and the p-value from two-sample
t-test are almost identical.

▶ The randomization test does not depend on normality or independence.



Two-Sample t-test versus Randomization Test

▶ The randomization test does depend on Fisher’s concept that after
randomization, if the null hypothesis is true, the two results obtained from
each particular plot will be exchangeable.

▶ The randomization test tells you what you could say if exchangeability
were true.



Paired Comparisons

▶ Increase precision by making comparisons within matched pairs of
experimental material.

▶ Randomize within a pair.



Boy’s Shoe Experiment

▶ Two materials to make boy’s shoes, A and B, are tested to evaluate if B is
more sturdy compared to A.

▶ During the experimental test some boys scuffed their shoes more than
others.

▶ Each boy’s two shoes were subjected to the same treatment by having
each boy wear both materials.

▶ Working with 10 differences B-A most of the boy-to-boy variation could be
eliminated.

▶ Called a randomized paired comparison design.



Boy’s Shoe Experiment

▶ Toss a coin to randomize material to L/R foot of a boy.
▶ Head: Material A used on right foot.
▶ Null hypothesis: amount of wear associated with material A and B are the

same.
▶ So labelling given to a pair of results only affects the sign of the difference.



Randomized paired comparison

library(BHH2)
data(shoes.data)
shoes.data

## boy matA sideA matB sideB
## 1 1 13.2 L 14.0 R
## 2 2 8.2 L 8.8 R
## 3 3 10.9 R 11.2 L
## 4 4 14.3 L 14.2 R
## 5 5 10.7 R 11.8 L
## 6 6 6.6 L 6.4 R
## 7 7 9.5 L 9.8 R
## 8 8 10.8 L 11.3 R
## 9 9 8.8 R 9.3 L
## 10 10 13.3 L 13.6 R



Randomized paired comparison
plot(shoes.data$boy,shoes.data$matA,pch=16,cex=1.5,

xlab="Boy",ylab="Wear")
points(shoes.data$boy,shoes.data$matB,pch=17,cex=1.5)
legend("bottomright",legend=c("Material A","Material B"),pch=c(16,17))
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Randomized paired comparison

diff <- shoes.data$matA-shoes.data$matB
meandiff <- mean(diff); meandiff

## [1] -0.41
shoe.dat2 <- data.frame(shoes.data,diff)
shoe.dat2

## boy matA sideA matB sideB diff
## 1 1 13.2 L 14.0 R -0.8
## 2 2 8.2 L 8.8 R -0.6
## 3 3 10.9 R 11.2 L -0.3
## 4 4 14.3 L 14.2 R 0.1
## 5 5 10.7 R 11.8 L -1.1
## 6 6 6.6 L 6.4 R 0.2
## 7 7 9.5 L 9.8 R -0.3
## 8 8 10.8 L 11.3 R -0.5
## 9 9 8.8 R 9.3 L -0.5
## 10 10 13.3 L 13.6 R -0.3



Boy’s Shoe Experiment

▶ The sequence of coin tosses is one of 210 = 1024 equiprobable outcomes.
▶ To test 𝐻0 the average difference of -0.41 observed observed can be

compared with the other 1023 averages by calculating the average
difference for each of 1024 arrangements of signs in:

̄𝑑 = ±0.8 ± 0.6 ⋯ ± 0.3
10



Randomized paired comparison

N <- 2^(10) # number of treatment assignments
res <- numeric(N) #vector to store results
LR <- list(c(-1,1)) # difference is multiplied by -1 or 1
# generate all possible treatment assign
trtassign <- expand.grid(rep(LR, 10))

for(i in 1:N){
res[i] <- mean(as.numeric(trtassign[i,])*diff)
}
trtassign[1:2,]

## Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10
## 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
## 2 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
res[1:2]

## [1] 0.41 0.25



Randomized paired comparison
hist(res, xlab="Mean Difference",main="Randomization Distribution Boys' Shoes")
abline(v = meandiff,col="blue")

Randomization Distribution Boys' Shoes
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Randomized paired comparison

sum(res<=meandiff) # number of differences le observed diff

## [1] 7
sum(res<=meandiff)/N # p-value

## [1] 0.006835938



Paired t-test

If we assume that the differences -0.8, -0.6, -0.3, 0.1, -1.1, 0.2, -0.3, -0.5, -0.5,
-0.3 are a random sample from a normal distribution then the statistic

𝑡 =
̄𝑑

𝑠 ̄𝑑/
√

10 ∼ 𝑡10−1,

where, 𝑠 ̄𝑑 is the sample standard deviation of the paired differences. The
p-value for testing if �̄� < 0 is

𝑃(𝑡9 < 𝑡).



Paired t-test

In general if there are 𝑛 differences then

𝑡 =
̄𝑑

𝑠 ̄𝑑/√𝑛 ∼ 𝑡𝑛−1,

where, 𝑠 ̄𝑑 is the sample standard deviation of the paired differences. The
p-value for testing if �̄� < 0 is

𝑃(𝑡𝑛−1 < 𝑡).

NB: This is the same as a one-sample t-test of the differences.



Paired t-test

In R a paired t-test can be obtained by using the command t.test() with
paired=T.
t.test(shoes.data$matA,shoes.data$matB,paired = TRUE,

alternative = "less")

##
## Paired t-test
##
## data: shoes.data$matA and shoes.data$matB
## t = -3.3489, df = 9, p-value = 0.004269
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -0.1855736
## sample estimates:
## mean of the differences
## -0.41



Paired t-test

This is the same as a one-sample t-test on the difference.
# same as a one-sample t-test on the diff
t.test(diff,alternative = "less")

##
## One Sample t-test
##
## data: diff
## t = -3.3489, df = 9, p-value = 0.004269
## alternative hypothesis: true mean is less than 0
## 95 percent confidence interval:
## -Inf -0.1855736
## sample estimates:
## mean of x
## -0.41



Paired t-test
qqnorm(diff); qqline(diff)
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