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Today’s class

I Ignorable treatment assignment and the propensity score
I Three methods that use the propensity score to reduce bias: matching;

stratification; and regression adjustment



Propensity Scores - Recap from Last Class

I The propensity score is

e(x) = P (T = 1|x) ,

where x are observed covariates.
I The propensity score is often estimated using logistic regression.
I The propensity score can be used to balance the distribution of covariates in

two groups:
P (x|T = 1, e(x)) = P (x|T = 0, e(x)) .



Propensity Scores and ignorable treatment assignment

1. If treatment assignment is ignorable then T⊥ (Y (0), Y (1)) |x.

The propensity score e(x) = P(T = 1|x) has the following property:

2. If the treatment assignment is ignorable then T⊥ (Y (0), Y (1)) |e (x) .

If 1. and 2. are true then

P (Ti = 1|Y (0), Y (1), xi) = P (Ti = 1|xi) = P (Ti = 1|e(xi)) .



Propensity Score and Ignorable Treatment Assignment

I In randomized studies the treatment assignment is ignorable (why?).
I In observational studies the treatment assignment is usually non-ignorable.



Propensity scores and ignorable treatment assignment

I The propensity score can be used in place of many covariates.
I If treatment assignment is ignorable then propensity score methods will

produce unbiased results of the treatment effects.
I In the smoking cessation study what does it mean for treatment assignment

to be ignorable?
I The potential outcomes for weight gain in the smoking cessation (treated)

and smoking (control) groups are independent conditional on the propensity
score.

I The treatment assignment mechanism has been reconstructed using the
propensity score.



Propensity scores and ignorable treatment assignment

I Suppose a critic came along and claimed that the study did not measure an
important covariate (e.g., spouse is a smoker) so the study is in no position
to claim that the smoking cessation group and the smoking groups are
comparable.

I This criticism could be dismissed in a randomized experiment —
randomization does tend to balance unobserved covariates — but the
criticism cannot be dismissed in an observational study.

I This difference in the unobserved covariate, the critic continues, is the real
reason outcomes differ in the treated and control groups: it is not an effect
caused by the treatment, but rather a failure on the part of the investigators
to measure and control imbalances in the unobserved covariate.

I The sensitivity of an observational study to bias from an unmeasured
covariate is the magnitude of the departure from the model that would need
to be present to materially alter the study’s conclusions.

I There are statistical methods to measure how sensitive an observational
study is to this type of bias.



Propensity scores and ignorable treatment assignment



Using the propensity score to reduce bias

The three most common techniques that use the propensity score are

1. matching,
2. stratification (also called subclassification)
3. regression adjustment.
I Each of these techniques is a way to make an adjustment for covariates

prior to (matching and stratification) or while (stratification and regression
adjustment) calculating the treatment effect.

I With all three techniques, the propensity score is calculated the same way,
but once it is estimated it is applied differently.



Maimonides’ Rule

I Educators are very interested in studying the effect of class size on learning.
I Does smaller class size cause students to achieve higher math and verbal

scores?
I Angrist and Lavy (1999) published an unusual study of the effects of class

size on academic achievement.
I Causal effects of class size on pupil achievement is difficult to measure. The

twelfth century Rabbinic scholar Maimonides interpreted the the Talmud’s
discussion of class size as:

I “Twenty-five children may be put in charge of one teacher. If the number in
the class exceeds twenty-five but is not more than forty, he should have an
assistant to help with instruction. If there are more than forty, two teachers
must be appointed.”



Maimonides’ Rule

I Since 1969 the rule has been used to determine class size in Israeli public
schools.

I Class size is usually determined by other factors such as wealth of a
community, special needs of students, etc.

I If adherence to Maimonides’ rule were perfectly rigid, then what would
separate a school with a single class of size 40 from the same school with
two classes whose average size is 20.5 is the enrollment of a single student.

Number of children in grade 5 40 80 120
Class size with one extra student 20.5 27 30.25



Maimonides’ Rule

I Angrist and Lavy matched schools where the number of grade 5 students
are 31-40 to schools where the number of grade 5 students are 41-50.

I 86 matched pairs of two schools were formed, matching to minimize to
total absolute difference in percentage disadvantaged.

I It’s plausible that whether or not a few more students enrol in the fifth
grade is a haphazard event.

I This is an example of natural experiment where students were haphazardly
(randomly) assigned to small or large grade 5 classes.

I It was haphazard because it depended only on the number of grade 5
children at a school.



Maimonides’ Rule
From Rosenbaum, 2010, pg.9



Propensity score matching

I In the Maimonides rule study assignment to a small/large was
haphazard/random.

I If there is no opportunity to take advantage of this type of treatment
assignment then we can calculate the propensity score and use this to
match.

I For each unit we have a propensity score.
I Randomly select a treated subject.
I Match to a control subject with closest propensity score (within some limit

or “calipers”).
I Eliminate both units from the pool of subjects until there is no acceptable

match.
I It’s not always possible to match every unit treated to a unit that is not

treated.



Propensity score matching - the model

prop.model <- glm(qsmk ~ as.factor(sex) + as.factor(race) +
age + as.factor(education.code) +
smokeintensity + smokeyrs +
as.factor(exercise) + as.factor(active) +
wt71, family = binomial(),
data = nhefshwdat)



Propensity score matching - the matching via Match

X <- prop.model$fitted
Y <- nhefshwdat$wt82_71
Tr <- nhefshwdat$qsmk
rr <- Matching::Match(Y = Y,Tr = Tr,X = X,M = 1)
summary(rr)

##
## Estimate... 2.9342
## AI SE...... 0.5838
## T-stat..... 5.026
## p.val...... 5.0087e-07
##
## Original number of observations.............. 1566
## Original number of treated obs............... 403
## Matched number of observations............... 403
## Matched number of observations (unweighted). 1009

cat("Treatment Diff SE:", round(rr$se.standard,2))

## Treatment Diff SE: 0.56



Propensity score matching

After matching on covariates the treatment effect (difference in weight gain
between the group that stopped smoking and the group that did not stop
smoking) is 2.93 with a p-value of 0 (5.0087e-07) and 95% confidence interval
(1.84, 4.02).



Propensity score matching -check covariate balance

Now, let’s check covariate balance.
MatchBalance(qsmk ~ as.factor(sex) + as.factor(race) +

age + as.factor(education.code) +
smokeintensity + smokeyrs +
as.factor(exercise) +
as.factor(active) + wt71, data=nhefshwdat,
match.out=rr,nboots=10)



Propensity score matching -check covariate balance

***** (V1) as.factor(sex)1 *****
Before Matching After Matching

mean treatment........ 0.45409 0.45409
mean control.......... 0.53396 0.45331
std mean diff......... -16.022 0.15703

NB: some output ommitted

***** (V3) age *****
Before Matching After Matching

mean treatment........ 46.174 46.174
mean control.......... 42.788 46.595
std mean diff......... 27.714 -3.4504

NB: some output ommitted

Sex has an absolute standardized difference of 16 before matching and 0.16 after
matching, and the absolute standardized difference of age has shifted from 27.71
to -3.45.



Propensity score matching -check covariate balance
How does this compare to not adjusting for imbalance?
#Unadjusted t-test
t.test(nhefshwdat$wt82_71[as.factor(nhefshwdat$qsmk)==1],

nhefshwdat$wt82_71[as.factor(nhefshwdat$qsmk)==0],
var.equal=T)

Two Sample t-test

data: nhefshwdat$wt82_71[as.factor(nhefshwdat$qsmk) == 1] and nhefshwdat$wt82_71[as.factor(nhefshwdat$qsmk) == 0]
t = 5.6322, df = 1564, p-value = 2.106e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.655796 3.425367

sample estimates:
mean of x mean of y
4.525079 1.984498

The unadjusted treatment effect is 2.54 with a p-value of 0. So, both analyses
lead to the same conclusion that stopping to smoke leads to a significant weight
gain. Although the weight gain in the matched propensity score analysis is
0.39Kg higher.



Propensity score subclassification/stratification

Propensity scores permit subclassification on multiple covariates simultaneously.
One advantage of this method is that the whole sample is used and not just
matched sets.

Cochran (1968) showed that creating five strata removes 90 per cent of the bias
due to the stratifying variable or covariate.

Rosenbaum and Rubin holds for stratification based on the propensity score.
Stratification on the propensity score balances all covariates that are used to
estimate the propensity score, and often five strata based on the propensity score
will remove over 90 per cent of the bias in each of these covariates.



Stratification

The following data were selected from data supplied to the U. S. Surgeon
General’s Committee from three of the studies in which comparisons of the
death rates of men with different smoking habits were made (Cochran, 1968).

The table shows the unadjusted death rates per 1,000 person-years.

Smoking group Canadian British U.S.
Non-smokers 20.2 11.3 13.5
Cigarettes only 20.5 14.1 13.5
Cigars, pipes 35.5 20.7 17.4

Conclusion: urge the cigar and pipe smokers to give up smoking and if they lack
the strength of will to do so, they should switch to cigarettes.



Stratification

Are there other variables in which the three groups of smokers may differ, that
(i) are related to the probability of dying; and (ii) are clearly not themselves
affected by smoking habits?



Stratification

The regression of probability of dying on age for men over 40 is a concave
upwards curve, the slope rising more and more steeply as age advances. The
mean ages for each group in the previous table are as follows.

Smoking group Canadian British U.S.
Non-smokers 54.9 49.1 57.0
Cigarettes only 50.5 49.8 53.2
Cigars, pipes 65.9 55.7 59.7



Stratification
I The table shows the adjusted death rates obtained when the age

distributions were divided into 9 subclasses.
I The results are similar for different numbers of subclasses.

Smoking group Canadian British U.S.
Non-smokers 20.2 11.3 13.5
Cigarettes only 29.5 14.8 21.2
Cigars, pipes 19.8 11.0 13.7

Compare to the unadjusted death rates

Smoking group Canadian British U.S.
Non-smokers 20.2 11.3 13.5
Cigarettes only 20.5 14.1 13.5
Cigars, pipes 35.5 20.7 17.4

Cochran (1968) showed that creating 5 or more strata removes 90% of the bias
due to the stratifying variable.



Propensity score subclassification/stratification

prop.model <- glm(qsmk ~ as.factor(sex) + as.factor(race) +
age + as.factor(education.code) +
smokeintensity + smokeyrs +
as.factor(exercise) + as.factor(active) +
wt71, family = binomial(),
data = nhefshwdat)

p.qsmk.obs <- predict(prop.model, type = "response")
strat <- quantile(p.qsmk.obs,probs = c(.2,.4,.6,.8))

First Quintile
strat1 <- p.qsmk.obs<=strat[1]
propmodel1 <- glm(wt82_71[strat1]~qsmk[strat1],data=nhefshwdat)
summary(propmodel1)

Second Quintile
strat2 <- p.qsmk.obs > strat[1] & p.qsmk.obs <= strat[2]
propmodel2 <- glm(wt82_71[strat2]~qsmk[strat2], data=nhefshwdat)
summary(propmodel2)



Propensity score subclassification/stratification

Third Quintile
strat3 <- p.qsmk.obs > strat[2] & p.qsmk.obs <= strat[3]
propmodel3 <- glm(wt82_71[strat3]~qsmk[strat3], data=nhefshwdat)
summary(propmodel3)

Fourth Quintile
strat4 <- p.qsmk.obs > strat[3] & p.qsmk.obs <= strat[4]
propmodel4 <- glm(wt82_71[strat4]~qsmk[strat4], data=nhefshwdat)
summary(propmodel4)

Fifth Quintile
strat5 <- p.qsmk.obs > strat[4]
propmodel5 <- glm(wt82_71[strat5]~qsmk[strat5], data=nhefshwdat)
summary(propmodel5)



Propensity score subclassification/stratification

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.582883 0.4463651 8.026799 2.055049e-14
qsmk[strat1] 1.571867 1.2204794 1.287909 1.987319e-01

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.700017 0.4466046 6.045654 4.258361e-09
qsmk[strat2] 5.054241 1.0286540 4.913451 1.449627e-06

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.121351 0.5384292 3.939888 0.0001007005
qsmk[strat3] 3.726930 1.0519470 3.542888 0.0004564504

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9552357 0.5130865 1.861744 6.358234e-02
qsmk[strat4] 3.8711676 0.9463872 4.090469 5.488916e-05

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2892809 0.5878199 -0.4921251 0.62297810
qsmk[strat5] 2.0550465 0.9192030 2.2356829 0.02608187



Propensity score subclassification/stratification

In summary the 5 quintiles produced treatment effects

Estimate (se) P-value PS Quintile
1.57 (1.22) 0.199 1
5.05 (1.03) 0.00 2
3.73 (1.05) 0.00 3
3.87 (0.95) 0.00 4
2.06 (0.92) 0.03 5

The overall treatment effect is 3.26, which can be obtained by averaging the
estimates within each stratum. This is a larger estimate compared to the
treatment effect obtained by matching. The treatment effect and can also be
estimated by fitting a linear regression model for the change in weight on the
treatment variable and the quintiles of the estimated propensity score.



Propensity score subclassification/stratification

attach(nhefshwdat)
#create a variable to describe subclass to include in the model
stratvar <- numeric(length(qsmk))
for (i in 1:length(qsmk))

{
if (strat1[i]==T) {stratvar[i] <- 1}
else

if (strat2[i]==T) {stratvar[i] <- 2}
else

if (strat3[i]==T) {stratvar[i] <- 3}
else

if (strat4[i]==T) {stratvar[i] <- 4}
else stratvar[i] <- 5
}
stratmodel <- glm(wt82_71~qsmk+as.factor(stratvar),data=nhefshwdat)
summary(stratmodel)$coef



Propensity score subclassification/stratification

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.3564796 0.4373149 7.6752008 2.894022e-14
qsmk 3.2645028 0.4542610 7.1864036 1.027063e-12
as.factor(stratvar)2 -0.3191003 0.6134512 -0.5201723 6.030173e-01
as.factor(stratvar)3 -1.1139815 0.6157083 -1.8092683 7.060174e-02
as.factor(stratvar)4 -2.2229271 0.6172504 -3.6013378 3.265030e-04
as.factor(stratvar)5 -4.1403625 0.6255644 -6.6186033 4.971650e-11

2.5 % 97.5 %
(Intercept) 2.499358 4.21360105
qsmk 2.374168 4.15483802
as.factor(stratvar)2 -1.521443 0.88324196
as.factor(stratvar)3 -2.320748 0.09278456
as.factor(stratvar)4 -3.432716 -1.01313860
as.factor(stratvar)5 -5.366446 -2.91427883

The linear regression yields the same treatment effect as averaging the estimates,
but also provides an estimate of standard error, p-value, and confidence interval
for the treatment effect.



Propensity score subclassification/stratification
We can investigate covariate balance within subclasses. In practice this should
occur prior to looking at the outcome data. The number of subjects and average
propensity score (shown in brackets) within each treatment group by subclass is
shown in the table below.

Subclass Smoking Cessation No smoking cessation
1 42 (0.14) 272 (0.12)
2 59 (0.2) 254 (0.19)
3 82 (0.24) 231 (0.24)
4 92 (0.31) 221 (0.3)
5 128 (0.43) 185 (0.41)

For example, the percentage of males in each subclass are:

Subclass Smoking Cessation No Smoking Cessation
1 28.57% 22.79%
2 44.07% 43.31%
3 54.88% 46.32%
4 55.43% 59.73%
5 67.19% 70.81%



Multivariate adjustment using the propensity score

I Another method for using the propensity score to adjust for bias is to use
the propensity score itself as a predictor along with the treatment indicator.

I The treatment effect is adjusted by the propensity score.
prop.model.adj <- glm(wt82_71 ~ qsmk + p.qsmk.obs, data = nhefshwdat)
summary(prop.model.adj)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.560244 0.5090376 10.923052 8.104078e-27
qsmk 3.397278 0.4559641 7.450757 1.528381e-13
p.qsmk.obs -14.751531 1.8846521 -7.827190 9.128614e-15

confint(prop.model.adj)

2.5 % 97.5 %
(Intercept) 4.562548 6.557939
qsmk 2.503604 4.290951
p.qsmk.obs -18.445381 -11.057680

The treatment effect is similar to the stratification method.



Comparing the three methods

The three propensity score methods yield similar results for the treatment effect.

Method Average Treatment Effect 95% Confidence Interval
Matched 2.93 1.8 - 4.0
Stratified 3.26 1.7 - 3.4
Regression 3.40 2.5 - 4.3
Unadjusted 2.54 1.7 - 3.4

The unadjusted analysis (two-sample t-test) underestimates the treatment effect
by approximately 1kg.


