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Today's Class

» Case study on power poses study: study replication and power
t t ies wi fons

» Calculating power via simulation

> Introduction to causal inference



Can power poses significantly change outcomes in your life?




Can power poses significantly change outcomes in your life?

Cuddy’s study methods:

» Randomly assigned 42 participants to the high-power pose or the
low-power-pose condition.

» Participants believed that the study was about the science of physiological
recordings and was focused on how placement of electrocardiography bk M
electrodes above and below the heart could influence data collection. ‘

> Participants’ bodies were posed by an experimenter into high-power or
low-power poses. Each participant held two poses for 1 min each.

» Participants’ risk taking was measured with a gambling task; feelings of
power were measured with self-reports.

» Saliva samples, which were used to test cortisol and testosterone levels, were
taken before and approximately 17 min after the power-pose manipulation.

(Carney, Cuddy, Yap, 2010)



Can power poses significantly change outcomes in your life?

Cuddy'’s study results:

As hypothesized, high-power poses caused an increase in testosterone
compared with low-power poses, which caused a decrease in
testosterone, F(1, 39) = 4.29{p < .05;r = .34. Also as hypothesized,
high-power poses caused a decrease in cortisol compared with

low-power poses, which caused an increase in cortisol, F(1, 38) = 7.45,
p<.02;r=.43



Can power poses significantly change outcomes in your life?

> The study was replicated by Ranehill et al. (2015)
> An initial power analysis based on the effect sizes in Carney et al. (power =
0.8, a = .05) indicated that a sample size of 100 participants would be
suitable.
library(pwr)
pwr.t.test(d=0.6,power = 0.8)

Two-sample t test power calculation

n = 44.58577
d=0.6
sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group



Can power poses significantly change outcomes in your life?

Ranehill et al. study used a sample of 200 participants to increase reliability.
This study found none of the significant differences found in Cuddy's study.
The replication study obtained very precise estimates of the effects.

What happened?

vvyVvyy



Can power poses significantly change outcomes in your life?

FEATURE

When the Revolution

Came for Amy Cuddy

As a young social psychologist, she played by the rules and
won big: an influential study, a viral TED talk, a prestigious
Job at Harvard. Then, suddenly, the rules changed.




Can power poses significantly change outcomes in your life?

» Sampling theory predicts that the variation between samples is proportional
to -=.

> In small samples we can expect variability.

> Many researchers often expect that these samples will be more similar than

sampling theory predicts.



Study replication
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Suppose that you have run an experiment on 20 subjects, and have obtained a
significant result from a two-sided z-test (Ho : = 0 vs.H: : o # 0) which
confirms your theory (z = 2.23, p < 0.05, two-tailed). The researcher is
planning to run the same experiment on an additional 10 subjects.. What is the
probability that the results will be significant at the 5% level by a one-tailed test
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Calculating Power by Simulation

> |f the test statistic and distribution of the test statistic are known then the
power of the test can be calculated via simulation.

» Consider a two-sample t-test with 30 subjects per group and the standard
deviation of the clinical outcome is known to be 1.

» What is the power of the test Hp : u1 — p2 = 0 versus I—@\: p1 — p2 = 0.5,
at the 5% significance level?

» The power is the proportion of times that the test correctly rejects the null
hypothesis in repeated sampling.



Calculating Power by Simulation \ows Jah LS
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We can simulate a single study using the rnorm() command. Let's assume that
n = np = 307/“ = 3.5,/1,2 = 3,0’ = 1,05 = 0.05.

set.seed(2301) —

t.test (rnorm(30,mean=3.5,sd=1) ,rnorm(30,mean=3,sd=1) ,var.equal = T)

o vhv

Two Sample t-test

data: rnorm(30, mean = 3.5, sd = 1) and rnorm(30, mean = 3, sd = 1)
t = 2.1462, df = 58, p-value = 0.03605 .E)f;

alternative hypothesis: true difference in means 1s not equal to O
95 percent confidence interval:

0.03458122 0.99248595

sample estimates:
mean of x mean of y

3.339362 2.825828

Should you reject Hy? \{é)



Calculating Power by Simulation N @5‘;1 L)

» Suppose that 10 studies are simulated. N L% g>

» What proportion of these 10 studies will reject the null hypothesis at the
5% level?

» To investigate how many times the two-sample t-test will reject at the 5%
level the replicate() command will be used to generate 10 studies and

calculate the p-value in each study. T Sk OV U\_QTW\AL(,
> It will still be assumed that

n1:n2:300: o = 0.05. f
set.seed(2301) //thk /
pvals <- replicate(10|t.test(rnorm(30,mean=3.5,sd=1)

S(po\f'&-'\::‘Jc;SH‘ ‘(]S rnorm(30,mean= =
l/O Ce—— var.equal =
pvals # print out 10 p-values gsfywap thm L2 vac

l T 4 U %‘}DL 5 P__\l‘ AV
[1] 0.03604893 0.15477655 0.01777959 0.40851999 0.34580930 0.11131007
[7] 0.147%&?81 0.00317709 0.09452230 0.3%}%3723

#power is the number of times the test rejects at the 57 level
sum(pvals<=0.05)/10

[1] 0.3 B<




Calculating Power by Simulation

But, since we only simulated 10 studies the estimate of power will have a large
standard error. So let's try simulating 10,000 studies so that we can obtain a
more precise estimate of power.
set.seed(2301)
pvals <- replicate(10000,t.test(rnorm(30,mean=3.5,sd=1),
rnorm(30,mean=3,sd=1),

var.equal = T)$p.value)

sum(pvals<=0.05) /10000

[1] 0.4881

PR



Calculating Power by Simulation

This is much closer to the theoretical power obtained from power.t.test().

power.t.test(n = 30,delta = 0.5,sd = 1,sig.level = 0.05)
v v’ v

Two-sample t test power calculation

n = 30
delta = 0.5
sd = 1

sig.level = 0.05

power = 0.47784

alternative = two.sided

NOTE: n is number in *each* group



Calculating Power by Simulation

> The built-in R functions power.t.test() and power.prop.test() don't
have an option for calculating power where the there is unequal allocation
of subjects between groups.

» These built-in functions don't have an option to investigate power if other
assumptions don't hold (e.g., normality).

» One option is to simulate power for the scenarios that are of interest.
Another option is to write your own function using the formula derived
above.



Calculating Power by Simulation

» Suppose the standard treatment for a disease has a response rate of 20%,
and an experimental treatment is anticipated to have a response rate of
28%.

» The researchers want both arms to have an equal number of subjects.

> A power calculation above revealed that the study will require
446 x 2 = 892 patients for 80% power.

» What would happen to the power if the researchers put more patients in the
experimental arm compared to the control arm?
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» The number of subjects in the experimental arm that have a positive
response to treatment will be an observation from a Bin(1500, 0.28).
> The number of subjects that have a positive response to the standard
treatment will be an observation from a Bin(500,0.2).
> We can obtain simulated responses from these distributions using the
rbinom() command in R.
set.seed(2301)
rbinom(1,1500,0.28)

[1] 403 &— Usy Suyeld hed P29t ey Pl
rbinom(1,500,0.20) LSe°~ wasd dVUbyed) had Wey. ve3Pong .

[1] 89 = 8Q Subyeh sk o pes- eI -



Calculating Power by Simulation

> The p-value for this simulated study can be obtained using prop.test().

set.seed(2301) % (= a3 X~ RY
prop.test(x=c(rbinom(1,1500,0.28) ,rbinom(1,500,0.20)),

n=c(1500,500) ,correct = F)
\ﬂ\/ /&(-
e N AR owc\:\\\ﬂ
L + o CowRav iy C PNPQ(

2-sample test for equality of proportions without contlnulty
correction

data: c(rbinom(1, 1500, 0.28), rbinom(1, 500, 0.2)) out of c(1500, 500
X-squared = 16.62, df = 1, p-value = 4.568e-05 < .o S
alternative hypothesis: two.sided
95 percent confidence interval:
0.05032654 0.13100680 6% \rfé%& \T\O
sample estimates:
prop 1 prop 2
0.2686667 0.1780000
S



Calculating Power by Simulation

Assume the standard treatment for a disease has a response rate of 20%, and an
experimental treatment is anticipated to have a response rate of 28%.

set.seed(2301) < — Goo \n)¥a}
ni <- 300 PoruEe s (WIS
o Boo -

n2 <- 100
o Vappen

pvals <- replicate(10000,

prop.test(x=c(rbinom(n = 1,size = nl\,prob = 0.28), ‘{B wrev J
rbinom(n = 1,size = n2,prob = 0.20)), «35 >
n=c(nl, n2),correct = F)$p.value)

sum(pvals <= 0.01)

N ¢

## [1] 1434

If the researchers enrol 500 subjects in the experimental arm, and loo
subjects in the standard arm then the power is 8.1Y3Y, at the _©-04
significance level. Power was calculated by sipiualting 1eo o hypothetical

studies.
= o.05 YPran }ng/\aado
Ly o= power > 0.l1U3Y
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Question

© Respond at PollEv.com/nathantaback
{5 Text NATHANTABACK to 37607 once to join, then 1, 2, 3, 4, or 5

If the researchers enrol A subjects in the experimental arm, and B subjects in the standard arm
then the power is C, at the D significance level. Power was calculated by simulating E
hypothetical studies. The values A, B, C, D, E are:

A=100, B=300,C=0.1434, D = 0.01, E = 400 1
A=300, B=100,C=1434, D =0.01, E = 10000 2 ‘g 2
(#4
&
A=300, B=100, C=0.1434, D = 0.01, E = 10000 @ 86 S
A=300, B=100, C=0.1434, D = 0.05, E = 10000 4 e 7

A=100, B=300,C=0.1434, D =0.05, E=10000 5



Introduction to causal inference - Bob’s headache

» Suppose Bob, at a particular point in time, is contemplating whether or not
to take an aspirin for a headache.

> There are two treatment levels, taking an aspirin, and not taking an aspirin.

> If Bob takes the aspirin, his headache may be gone, or it may remain, say,
an hour later; we denote this outcome, which can be either “Headache” or
“No Headache,” by Y/(Aspirin).

> Similarly, if Bob does not take the aspirin, his headache may remain an hour
later, or it may not; we denote this potential outcome by Y(No Aspirin),
which also can be either “Headache,” or “No Headache.”

» There are therefore two potential outcomes, Y (Aspirin) and Y(No Aspirin),
one for each level of the treatment. The causal effect of the treatment
involves the comparison of these two potential outcomes.



Introduction to causal inference - Bob’s headache

Because in this example each potential outcome can take on only two values, the
unit- level causal effect — the comparison of these two outcomes for the same
unit — involves one of four (two by two) possibilities:

1. Headache gone only with aspirin: Y(Aspirin) = No Headache, Y(No
Aspirin) = Headache

2. No effect of aspirin, with a headache in both cases: Y(Aspirin) = Headache,
Y(No Aspirin) = Headache

3. No effect of aspirin, with the headache gone in both cases: Y(Aspirin) =
No Headache, Y(No Aspirin) = No Headache

4. Headache gone only without aspirin: Y(Aspirin) = Headache, Y(No Aspirin)
= No Headache



Introduction to causal inference - Bob’s headache

There are two important aspects of this definition of a causal effect.

1. The definition of the causal effect depends on the potential outcomes, but
it does not depend on which outcome is actually observed.

2. The causal effect is the comparison of potential outcomes, for the same
unit, at the same moment in time post-treatment.

» The causal effect is not defined in terms of comparisons of outcomes at
different times, as in a before-and-after comparison of my headache before
and after deciding to take or not to take the aspirin.



The fundemental problem of causal inference

“The fundamental problem of causal inference” (Holland, 1986, p. 947) is the
problem that at most one of the potential outcomes can be realized and thus

observed.

> If the action you take is Aspirin, you observe Y'(Aspirin) and will never
know the value of Y (No Aspirin) because you cannot go back in time.

> Similarly, if your action is No Aspirin, you observe Y(No Aspirin) but
cannot know the value of Y'(Aspirin).

> In general, therefore, even though the unit-level causal effect (the
comparison of the two potential outcomes) may be well defined, by
definition we cannot learn its value from just the single realized potential
outcome.



The fundemental problem of causal inference

The outcomes that would be observed under control and treatment conditions
are often called counterfactuals or potential outcomes.

» If Bob took asprin for his headache then he would be assigned to the
treatment condition so T; = 1.

> Then Y(Aspirin) is observed and Y(No Aspirin) is the unobserved
counterfactual outcome—it represents what would have happened to Bob if
he had no taken aspirin.

> Conversely, if Bob had not taken aspirin then Y/(No Aspirin) is observed
and Y'(Aspirin) is counterfactual.

> In either case, a simple treatment effect for Bob can be defined as

treatment effect for Bob = Y(Aspirin) — Y/ (No Aspirin).



