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Today’s Class

I Introduction to Phase III Clinical Trials

I Introduction to power

I Power of the one-sample z-test

I Power of the one-sample t-test

- power
 of two - Sample t - test .



What are clinical trials?

Clinical trials are prospective intervention studies with human subjects to

investigate experimental drugs, new treatments, medical devices, or clinical

procedures (Yin, 2012).



Phases of clinical trials

Developing a new drug for cancer.

I Preclinical studies: In vitro (e.g. slides, test tubes) and in vivo (living

organism such as rodents) studies on wide range of doses of experimental

agents. This stage of study provides preliminary toxicity and e�cacy data

including pharmacokinetics (PK) and pharmacodynamics (PD) information.

I Phase I: Usually first study in humans to investigate the toxicity and side

e�ects of the new agent. Identify MTD.

I Phase II: Assess if drug has su�cient e�cacy. The drug is usually

administered around the MTD. If drug does not show e�cacy or is too toxic

then further testing is discontinued.

- maximum tolerated dose .



Phases of clinical trials

I Phase III: If drug passes phase II testing then it is compared to the current

standard of care or placebo. These are long-term, large scale randomized

studies that may involve hundreds or thousands of patients.

I If the drug is proven to be e�ective (e.g. two positive phase III trials

required for FDA approval) the company will file an application with

regulatory agencies to sell the drug. If approved then the drug will be

available to the general population in the country where it was approved.

I Phase IV: After approval a study might follow a large number of patients

over a longer period of time to monitor side e�ects and drug interactions.

For example, findings from these studies might add a warning label to the

drug.
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Phases of clinical trials

I The four phases are usually conducted sequentially and separately.

I Each trial requires an independent study design and a study protocol.

I Every aspect of trial design, monitoring, and data analysis call upon

statistical methods.

I In randomized clinical trials a treatment group is often referred to as an

arm. F



Phases of clinical trials

I Experimental design plays a very important role in the design of clinical

trials.

I Two arm clinical trials use all of theory of randomization that we learned

about last week. Randomization is used to design phase III clinical trials

since causation can usually be assessed using a randomized design.



How can causation be assessed using a randomized design?

I Suppose that patients are randomized in a two arm clinical trial where one

of the arms is the standard treatment and the other arm is an experimental

treatment

I A statistically significant di�erence in the outcome between the two arms is

observed showing the experimental treatment is more e�cacious.

I The interpretation is that the experimental treatment caused patients to

have a better outcome since the only di�erence between the two arms is the

treatment. Randomization is supposed to ensure that the groups will be

similar with respect to all the factors measured in the study and all the

factors that are not measured.



How many patients should be enrolled in a Phase III clinical trial?

I In a phase III trial sample size is the most critical component of the study

design. The sample size has implications for how many subjects will be

exposed to a drug that has no proven e�cacy.

I The investigator needs to specify type I, II error rates, and the e�ect sizes.

I Standard practice is to compute the smallest sample size required to detect

a clinically important/significant treatment di�erence with su�cient.



How many patients should be enrolled in a Phase III clinical trial?

I If the sample size is too small then the trial might fail to discover a truly

e�ective drug because the statistical test cannot reach the significance level

(5%) due to a lack of power.

I If the sample size is overestimated then resources wasted and drug

development delayed since patient enrollment is often the main factor in

time to complete a trial.



Statistical hypotheses

Suppose that subjects are randomized to treatments A or B with equal

probability. Let µA be the mean response in the group receiving drug A and µB
be the mean response in the group receiving drug B. The null hypothesis is that

there is no di�erence between A and B, the alternative claims there is a clinically

meaningful di�erence between them.

H0 : µA = µB versus H0 : µA ”= µBDa



Statistical hypotheses

The type I error rate is defined as:

– = P (type I error)

= P (Reject H0|H0 is true) .
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Statistical hypotheses

The type II error rate is defined as:

— = P (type II error)

= P (Accept H0|H1 is true) .
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Statistical hypotheses

Power is define as:

power = 1 ≠ —

= 1 ≠ P (Accept H0|H1 is true)

= P (Reject H0|H1 is true) .
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Power

The probability that a fixed level – test will reject H0 when a particular

alternative value of the parameter is true is called power of the test to detect

that alternative.



Power

Can a 6-month exercise program increase the total body bone mineral content

(TBBMC) of young women? Based on results of a previous study ‡ = 2 for the

percent change in TBBMC over the 6-month period. A change in TBBMC of

1% would be considered important. Is 25 subjects a large enough sample size for

this project?
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Power of the one sample z-test

Let X1, ..., Xn be a random sample from a N(µ, ‡2
) distribution. A test of the

hypothesis

H0 : µ = µ0 versus H0 : µ ”= µ0

will reject at level – if and only if

----
X̄ ≠ µ0
‡/

Ô
n

---- Ø z–/2,

or

--X̄ ≠ µ0
-- Ø ‡Ô

n
z–/2,

where z–/2 is the 100(1 ≠ –/2)
th

percentile of the N(0, 1).
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Power of the one sample z-test

The power of the test at µ = µ1 is

1 ≠ — = 1 ≠ P (type II error)

= P (Reject H0|H1 is true)

= P (Reject H0|µ = µ1)

= P

3--X̄ ≠ µ0
-- Ø ‡Ô

n
z–/2|µ = µ1

4

Subtract the mean µ1 and divide by ‡/
Ô

n to obtain (why?):

1 ≠ — = 1 ≠ �

3
z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
+ �

3
≠z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
,

where �(·) is the N(0, 1) CDF.
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Power of the one sample z-test

The power function of the one-sample z-test is:

1 ≠ — = 1 ≠ �

3
z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
+ �

3
≠z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
.

What is the limit of the power function as:
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Why is Power and Sample Size Important in Phase III Clinical Trials?

I If a new treatment is to be used in patients then it should be compared to

the standard treatment.

I Evidence is required that the new treatment is e�ective and safe.

I The form of the evidence is a hypothesis test.

I Will the hypothesis test reject if a di�erence between the treatments really

exists?

I High power will ensure that if a di�erence exists then the hypothesis test

will have a high probability of rejecting.

I The most practical way to ensure the test is powerful is to enrol enough

patients in each arm of the trial.



Sample Size and Power in Phase III Clinical Trials

I The sample size is calculated under the alternative hypothesis based on the

type I error rate – and power 1 ≠ —.

I Specify a clinically meaningful di�erence that is to be detected at the

conclusion of the trial.

I Intuitively, if a small di�erence (e�ect size) is expected between the two

treatments in comparison, a large sample size would be required, and vice

versa. Why?

I Sample size also depends on the variance.

I The larger the variance, the harder it is to detect the di�erence and thus a

larger sample size is needed.



Power of the one sample z-test

Let X1, ..., Xn be a random sample from a N(µ, ‡2
) distribution. A test of the

hypothesis

H0 : µ = µ0 versus H0 : µ ”= µ0

will reject at level – if and only if

----
X̄ ≠ µ0
‡/

Ô
n

---- Ø z–/2,

or

--X̄ ≠ µ0
-- Ø ‡Ô

n
z–/2,

where z–/2 is the 100(1 ≠ –/2)
th

percentile of the N(0, 1).
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Power of the one sample z-test

The power of the test at µ = µ1 is

1 ≠ — = 1 ≠ P (type II error)

= P (Reject H0|H1 is true)

= P (Reject H0|µ = µ1)

= P

3--X̄ ≠ µ0
-- Ø ‡Ô

n
z–/2|µ = µ1

4

Subtract the mean µ1 and divide by ‡/
Ô

n to obtain (why?):

1 ≠ — = 1 ≠ �

3
z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
+ �

3
≠z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
,

where �(·) is the N(0, 1) CDF.



Power of the one sample z-test

The power function of the one-sample z-test is:

1 ≠ — = 1 ≠ �

3
z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
+ �

3
≠z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
.
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Power of the one-sample z-test

The power function for a one-sample z-test can be calculated using R.

1 ≠ — = 1 ≠ �

3
z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
+ �

3
≠z–/2 ≠

3
µ1 ≠ µ0
‡/

Ô
n

44
.

pow.z.test <- function(alpha,mu1,mu0,sigma,n){

arg1 <- qnorm(1-alpha/2)-(mu1-mu0)/(sigma/sqrt(n))

arg2 <- -1*qnorm(1-alpha/2)-(mu1-mu0)/(sigma/sqrt(n))

1-pnorm(arg1)+pnorm(arg2)

}
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Power of the one-sample z-test

For example the power of the test

H0 : µ = 0 versus H0 : µ = 0.2

with n = 30, ‡ = 0.2, – = 0.05 can be calculated by calling the above function.

pow.z.test(.05,.15,0,.2,30)

[1] 0.9841413

What does this mean?

If too tests were performed

then 98 would Correctly
reject and 2 would

Incorrectly reject ( on

average ) .

a

A test  with a Sample Size  of

30  and SD of 0 . 2 at the

5% Significance level will

Correctly reject µ=o . 2

98% of the time .



Power of the one-sample t-test

Let X1, ..., Xn be a random sample from a N(µ, ‡2
) distribution. A test of the

hypothesis

H0 : µ = µ0 versus H0 : µ ”= µ0

will reject at level – if and only if

----
X̄ ≠ µ0
S/

Ô
n

---- Ø tn≠1,–/2,

where tn≠1,–/2 is the 100(1 ≠ –/2)
th

percentile of the tn≠1.
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Power of the one-sample t-test

It can be shown that

Ô
n

5
X̄ ≠ µ0

S

6
=

Z + “
V /(n ≠ 1)

,

where,

Z =

Ô
n(X̄ ≠ µ1)

‡

“ =

Ô
n(µ1 ≠ µ0)

‡

V =
(n ≠ 1)

‡2 S
2.

Z ≥ N(0, 1) and V ≥ ‰2
n≠1 and Z is independent of V .
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Power of the one-sample t-test

I If “ = 0 then then
Ô

n

Ë
X̄≠µ0

S

È
≥ tn≠1. This is sometimes called the

central t-distribution.

I If “ ”= 0 then
Ô

n

Ë
X̄≠µ0

S

È
≥ tn≠1,“ , where tn≠1,“ is the non-central

t-distribution with non-centrality parameter “.O



Power of the one-sample t-test

A plot of the central (“ = 0) and non-central t (“ = 1, 2) are shown in the plot

below.
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Power of the one-sample t-test

The power of the test at µ = µ1 is

1 ≠ — = 1 ≠ P (type II error)

= P (Reject H0|H1 is true)

= P (Reject H0|µ = µ1)

= P

A-----
X̄ ≠ µ0

SÔn

----- Ø tn≠1,–/2|µ = µ1

B

= P(tn≠1,“ Ø tn≠1,–/2) + P(tn≠1,“ < ≠tn≠1,–/2)Cgs↳ to

pus
.



Power of the one-sample t-test

P(tn≠1,“ Ø tn≠1,–/2) + P(tn≠1,“ < ≠tn≠1,–/2)

The following function calculates the power function for the one-sample t-test in

R:

onesampttestpow <- function(alpha,n, mu0, mu1,sigma)

{delta <- mu1-mu0

t.crit <-qt(1-alpha/2,n-1)

t.gamma <- sqrt(n)*(delta/sigma)

t.power <- 1-pt(t.crit,n-1,ncp=t.gamma)

+pt(-t.crit,n-1,ncp=t.gamma)

return(t.power)

}
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Power of the one-sample t-test

The power of the t-test for testing

H0 : µ = 0 versus H0 : µ = 0.15

with n = 10, ‡ = 0.2, – = 0.05 can be calculated by calling the above function is

onesampttestpow(.05,10,0,.15,0.2)

[1] 0.5619339 56% power
-

most practical way to increase power

IS increase Sample Size .



Power of the one-sample t-test

Use the built-in function in R to calculate the power of t-test power.t.test().

power.t.test(n = 10,delta = 0.15,sd = 0.2,

sig.level = 0.05,type = "one.sample" )

One-sample t test power calculation

n = 10

delta = 0.15

sd = 0.2

sig.level = 0.05

power = 0.5619339

alternative = two.sided

/
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Power of the two-sample t-test

I Consider a two-sample comparison with continuous outcomes. Let Yik be

the observed outcome for the i
th

subject in the kth treatment group, for

i = 1, ..., nk , and k = 1, 2. The outcomes in the two groups are assumed to

be independent and normally distributed with di�erent means but an equal

variance ‡2
,

Yik ≥ N(µk , ‡2
).

I Let ◊ = µ1 ≠ µ2, the di�erence in the mean between treatment 1 (the new

therapy) and treatment 2 (the standard of care).

I To test whether the e�ects of the two treatments are the same, we

formulate the null and alternative hypotheses as

H0 : ◊ = 0 versus H0 : ◊ ”= 0.
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Power of the two-sample t-test

I Consider a two-sample comparison with continuous outcomes. Let Yik be

the observed outcome for the i
th

subject in the kth treatment group, for

i = 1, ..., nk , and k = 1, 2. The outcomes in the two groups are assumed to

be independent and normally distributed with di�erent means but an equal

variance ‡2
,

Yik ≥ N(µk , ‡2
).

I Let ◊ = µ1 ≠ µ2, the di�erence in the mean between treatment 1 (the new

therapy) and treatment 2 (the standard of care).

I To test whether the e�ects of the two treatments are the same, we

formulate the null and alternative hypotheses as

H0 : ◊ = 0 versus H0 : ◊ ”= 0.



Power of the two-sample t-test

The two-sample t statistic is given by

Tn =
Ȳ1 ≠ Ȳ2

Sp


(1/n1 + 1/n2)

≥ tn1+n2≠2.

I Tn ≥ tn1+n2≠2 under H0
I Tn ≥ tn1+n2≠2,“ with noncentrality parameter

“ =
µ1 ≠ µ2

‡


1/n1 + 1/n2
,

under H1.

needed to Compute

power
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Power of the two-sample t-test

H0 is rejected if

|Tn| Ø tn1+n2≠2,–/2,

where tdf ,–/2 is the 100(1 ≠ –/2)th percentile of the central t-distribution with

df degrees of freedom. (Yin, pg. 164-165)

I use t.test() to do the calculations.

:
- the  thirty  L

°

tincture -4212

& this will Conduct a

two - Sample t - test .



Power of the two-sample t-test

The power of the test is

1 ≠ — = 1 ≠ P(tn1+n2≠2,“ Ø tn1+n2≠2,–/2) + P(tn1+n2≠2,“ < ≠tn1+n2≠2,–/2)

The sample size can be solved from this equation which does not have a closed

form.

The sample size can be determined by specifying:

I type I and type II error rates,

I the standard deviation,

I the di�erence in treatment means that the clinical trial aims to detect.
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Power of the two-sample t-test

1 ≠ — = 1 ≠ P(tn1+n2≠2,“ Ø tn1+n2≠2,–/2) + P(tn1+n2≠2,“ < ≠tn1+n2≠2,–/2)

twosampttestpow <- function(alpha,n1,n2, mu1, mu2,sigma){

delta <- mu1-mu2

t.crit <-qt(1-alpha/2,n1+n2-2)

t.gamma <- delta/(sigma*sqrt(1/n1+1/n2))

t.power <- 1-pt(t.crit,n1+n2-2,ncp=t.gamma)+
pt(-t.crit,n1+n2-2,ncp=t.gamma)

return(t.power)

}
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Power of the two-sample t-test

A clinical trial to test a new treatment against the standard treatment for colon

cancer is being designed. The investigators feel that the smallest meaningful

di�erence in tumour growth is 1cm. The standard deviation of tumour growth is

3cm. The investigators feel that they can enrol 50 subjects per arm. Will this

clinical trial have adequate power to detect a di�erence between the treatments?

I What are the parameters of interest?

I What are the null and alternative hypotheses?

I How can the power of the study be calculated?
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Power of the two-sample t-test

twosampttestpow(.05,50,50,1,2,3)

[1] 0.3785749

Nc NLM ML T

= power
.



Power of the two-sample t-test

I power.t.test() can calculate the number of subjects required to achieve

a certain power.

I Suppose the investigators want to know how many subjects per group

would have to be enrolled in each group to achieve 80% power under the

same conditions?

power.t.test(power = 0.8,delta = 1,sd = 3,sig.level = 0.05)

Two-sample t test power calculation

n = 142.2466

delta = 1

sd = 3

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group



Power of the two-sample t-test

The following plot shows power of the two-sample t-test as a function of the

di�erence ◊ = µ1 ≠ µ2 to be detected and equal sample size per group.
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Power of the two-sample t-test

This plot shows power as a function of ‡ and sample size per group.
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Power of the two-sample t-test

In some studies instead of specifying the di�erence in treatment means and

standard deviation separately the ratio

ES =
µ1 ≠ µ2

‡

can be specified.

I ES is called the scaled e�ect size.

I Cohen (1992) suggests that e�ect sizes of 0.2, 0.5, 0.8 correspond to small,

medium , and large e�ects respectively.



Power of the two-sample t-test

Power as a function of e�ect size can be investigated.

The plot shows that for n1 = n2 = 10 the two-sample t-test has at least 80%

power for detecting e�ect sizes that are at least 1.3.
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