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Today’s Class

I Introduction to Phase III Clinical Trials
I Introduction to power
I Power of the one-sample z-test
I Power of the one-sample t-test



What are clinical trials?

Clinical trials are prospective intervention studies with human subjects to
investigate experimental drugs, new treatments, medical devices, or clinical
procedures (Yin, 2012).



Phases of clinical trials

Developing a new drug for cancer.
I Preclinical studies: In vitro (e.g. slides, test tubes) and in vivo (living

organism such as rodents) studies on wide range of doses of experimental
agents. This stage of study provides preliminary toxicity and efficacy data
including pharmacokinetics (PK) and pharmacodynamics (PD) information.

I Phase I: Usually first study in humans to investigate the toxicity and side
effects of the new agent. Identify MTD.

I Phase II: Assess if drug has sufficient efficacy. The drug is usually
administered around the MTD. If drug does not show efficacy or is too toxic
then further testing is discontinued.



Phases of clinical trials

I Phase III: If drug passes phase II testing then it is compared to the current
standard of care or placebo. These are long-term, large scale randomized
studies that may involve hundreds or thousands of patients.

I If the drug is proven to be effective (e.g. two positive phase III trials
required for FDA approval) the company will file an application with
regulatory agencies to sell the drug. If approved then the drug will be
available to the general population in the country where it was approved.

I Phase IV: After approval a study might follow a large number of patients
over a longer period of time to monitor side effects and drug interactions.
For example, findings from these studies might add a warning label to the
drug.



Phases of clinical trials

I The four phases are usually conducted sequentially and separately.
I Each trial requires an independent study design and a study protocol.
I Every aspect of trial design, monitoring, and data analysis call upon

statistical methods.
I In randomized clinical trials a treatment group is often referred to as an

arm.



Phases of clinical trials

I Experimental design plays a very important role in the design of clinical
trials.

I Two arm clinical trials use all of theory of randomization that we learned
about last week. Randomization is used to design phase III clinical trials
since causation can usually be assessed using a randomized design.



How can causation be assessed using a randomized design?

I Suppose that patients are randomized in a two arm clinical trial where one
of the arms is the standard treatment and the other arm is an experimental
treatment

I A statistically significant difference in the outcome between the two arms is
observed showing the experimental treatment is more efficacious.

I The interpretation is that the experimental treatment caused patients to
have a better outcome since the only difference between the two arms is the
treatment. Randomization is supposed to ensure that the groups will be
similar with respect to all the factors measured in the study and all the
factors that are not measured.



How many patients should be enrolled in a Phase III clinical trial?

I In a phase III trial sample size is the most critical component of the study
design. The sample size has implications for how many subjects will be
exposed to a drug that has no proven efficacy.

I The investigator needs to specify type I, II error rates, and the effect sizes.
I Standard practice is to compute the smallest sample size required to detect

a clinically important/significant treatment difference with sufficient.



How many patients should be enrolled in a Phase III clinical trial?

I If the sample size is too small then the trial might fail to discover a truly
effective drug because the statistical test cannot reach the significance level
(5%) due to a lack of power.

I If the sample size is overestimated then resources wasted and drug
development delayed since patient enrollment is often the main factor in
time to complete a trial.



Statistical hypotheses

Suppose that subjects are randomized to treatments A or B with equal
probability. Let µA be the mean response in the group receiving drug A and µB
be the mean response in the group receiving drug B. The null hypothesis is that
there is no difference between A and B, the alternative claims there is a clinically
meaningful difference between them.

H0 : µA = µB versus H0 : µA 6= µB



Statistical hypotheses

The type I error rate is defined as:

α = P (type I error)
= P (Reject H0|H0 is true) .



Statistical hypotheses

The type II error rate is defined as:

β = P (type II error)
= P (Accept H0|H1 is true) .



Statistical hypotheses

Power is define as:

power = 1− β
= 1− P (Accept H0|H1 is true)
= P (Reject H0|H1 is true) .



Power

The probability that a fixed level α test will reject H0 when a particular
alternative value of the parameter is true is called power of the test to detect
that alternative.



Power

Can a 6-month exercise program increase the total body bone mineral content
(TBBMC) of young women? Based on results of a previous study σ = 2 for the
percent change in TBBMC over the 6-month period. A change in TBBMC of
1% would be considered important. Is 25 subjects a large enough sample size for
this project?



Power of the one sample z-test

Let X1, ...,Xn be a random sample from a N(µ, σ2) distribution. A test of the
hypothesis

H0 : µ = µ0 versus H0 : µ 6= µ0

will reject at level α if and only if∣∣∣∣ X̄ − µ0
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where zα/2 is the 100(1− α/2)th percentile of the N(0, 1).



Power of the one sample z-test

The power of the test at µ = µ1 is

1− β = 1− P (type II error)
= P (Reject H0|H1 is true)
= P (Reject H0|µ = µ1)
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where Φ(·) is the N(0, 1) CDF.



Power of the one sample z-test

The power function of the one-sample z-test is:
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What is the limit of the power function as:
I n→∞
I µ1 → µ0



Why is Power and Sample Size Important in Phase III Clinical Trials?

I If a new treatment is to be used in patients then it should be compared to
the standard treatment.

I Evidence is required that the new treatment is effective and safe.
I The form of the evidence is a hypothesis test.
I Will the hypothesis test reject if a difference between the treatments really

exists?
I High power will ensure that if a difference exists then the hypothesis test

will have a high probability of rejecting.
I The most practical way to ensure the test is powerful is to enrol enough

patients in each arm of the trial.



Sample Size and Power in Phase III Clinical Trials

I The sample size is calculated under the alternative hypothesis based on the
type I error rate α and power 1− β.

I Specify a clinically meaningful difference that is to be detected at the
conclusion of the trial.

I Intuitively, if a small difference (effect size) is expected between the two
treatments in comparison, a large sample size would be required, and vice
versa. Why?

I Sample size also depends on the variance.
I The larger the variance, the harder it is to detect the difference and thus a

larger sample size is needed.



Power of the one sample z-test

Let X1, ...,Xn be a random sample from a N(µ, σ2) distribution. A test of the
hypothesis

H0 : µ = µ0 versus H0 : µ 6= µ0
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Power of the one sample z-test

The power of the test at µ = µ1 is
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Power of the one sample z-test

The power function of the one-sample z-test is:
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I σ → 0



Power of the one-sample z-test

The power function for a one-sample z-test can be calculated using R.
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pow.z.test <- function(alpha,mu1,mu0,sigma,n){
arg1 <- qnorm(1-alpha/2)-(mu1-mu0)/(sigma/sqrt(n))
arg2 <- -1*qnorm(1-alpha/2)-(mu1-mu0)/(sigma/sqrt(n))
1-pnorm(arg1)+pnorm(arg2)

}



Power of the one-sample z-test

For example the power of the test

H0 : µ = 0 versus H0 : µ = 0.2

with n = 30, σ = 0.2, α = 0.05 can be calculated by calling the above function.
pow.z.test(.05,.15,0,.2,30)

[1] 0.9841413

What does this mean?



Power of the one-sample t-test

Let X1, ...,Xn be a random sample from a N(µ, σ2) distribution. A test of the
hypothesis

H0 : µ = µ0 versus H0 : µ 6= µ0

will reject at level α if and only if∣∣∣∣ X̄ − µ0

S/
√
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where tn−1,α/2 is the 100(1− α/2)th percentile of the tn−1.



Power of the one-sample t-test

It can be shown that
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Power of the one-sample t-test

I If γ = 0 then then
√

n
[

X̄−µ0
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∼ tn−1. This is sometimes called the

central t-distribution.

I If γ 6= 0 then
√

n
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]
∼ tn−1,γ , where tn−1,γ is the non-central

t-distribution with non-centrality parameter γ.



Power of the one-sample t-test
A plot of the central (γ = 0) and non-central t (γ = 1, 2) are shown in the plot
below.
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Power of the one-sample t-test

The power of the test at µ = µ1 is

1− β = 1− P (type II error)
= P (Reject H0|H1 is true)
= P (Reject H0|µ = µ1)

= P

(∣∣∣∣∣ X̄ − µ0
S√
n
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)
= P(tn−1,γ ≥ tn−1,α/2) + P(tn−1,γ < −tn−1,α/2)



Power of the one-sample t-test

P(tn−1,γ ≥ tn−1,α/2) + P(tn−1,γ < −tn−1,α/2)

The following function calculates the power function for the one-sample t-test in
R:
onesampttestpow <- function(alpha,n, mu0, mu1,sigma)
{delta <- mu1-mu0
t.crit <-qt(1-alpha/2,n-1)
t.gamma <- sqrt(n)*(delta/sigma)
t.power <- 1-pt(t.crit,n-1,ncp=t.gamma)

+pt(-t.crit,n-1,ncp=t.gamma)
return(t.power)
}



Power of the one-sample t-test

The power of the t-test for testing

H0 : µ = 0 versus H0 : µ = 0.15

with n = 10, σ = 0.2, α = 0.05 can be calculated by calling the above function is
onesampttestpow(.05,10,0,.15,0.2)

[1] 0.5619339



Power of the one-sample t-test

Use the built-in function in R to calculate the power of t-test power.t.test().
power.t.test(n = 10,delta = 0.15,sd = 0.2,

sig.level = 0.05,type = "one.sample" )

One-sample t test power calculation

n = 10
delta = 0.15

sd = 0.2
sig.level = 0.05

power = 0.5619339
alternative = two.sided



Power of the two-sample t-test

I Consider a two-sample comparison with continuous outcomes. Let Yik be
the observed outcome for the i th subject in the kth treatment group, for
i = 1, ..., nk , and k = 1, 2. The outcomes in the two groups are assumed to
be independent and normally distributed with different means but an equal
variance σ2,

Yik ∼ N(µk , σ
2).

I Let θ = µ1 − µ2, the difference in the mean between treatment 1 (the new
therapy) and treatment 2 (the standard of care).

I To test whether the effects of the two treatments are the same, we
formulate the null and alternative hypotheses as

H0 : θ = 0 versus H0 : θ 6= 0.



Power of the two-sample t-test

I Consider a two-sample comparison with continuous outcomes. Let Yik be
the observed outcome for the i th subject in the kth treatment group, for
i = 1, ..., nk , and k = 1, 2. The outcomes in the two groups are assumed to
be independent and normally distributed with different means but an equal
variance σ2,

Yik ∼ N(µk , σ
2).

I Let θ = µ1 − µ2, the difference in the mean between treatment 1 (the new
therapy) and treatment 2 (the standard of care).

I To test whether the effects of the two treatments are the same, we
formulate the null and alternative hypotheses as

H0 : θ = 0 versus H0 : θ 6= 0.



Power of the two-sample t-test

The two-sample t statistic is given by

Tn = Ȳ1 − Ȳ2

Sp
√
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∼ tn1+n2−2.

I Tn ∼ tn1+n2−2 under H0
I Tn ∼ tn1+n2−2,γ with noncentrality parameter

γ = µ1 − µ2

σ
√

1/n1 + 1/n2
,

under H1.



Power of the two-sample t-test

H0 is rejected if

|Tn| ≥ tn1+n2−2,α/2,

where tdf ,α/2 is the 100(1− α/2)th percentile of the central t-distribution with
df degrees of freedom. (Yin, pg. 164-165)

I use t.test() to do the calculations.



Power of the two-sample t-test

The power of the test is

1− β = 1− P(tn1+n2−2,γ ≥ tn1+n2−2,α/2) + P(tn1+n2−2,γ < −tn1+n2−2,α/2)

The sample size can be solved from this equation which does not have a closed
form.

The sample size can be determined by specifying:
I type I and type II error rates,
I the standard deviation,
I the difference in treatment means that the clinical trial aims to detect.



Power of the two-sample t-test

1− β = 1− P(tn1+n2−2,γ ≥ tn1+n2−2,α/2) + P(tn1+n2−2,γ < −tn1+n2−2,α/2)

twosampttestpow <- function(alpha,n1,n2, mu1, mu2,sigma){
delta <- mu1-mu2
t.crit <-qt(1-alpha/2,n1+n2-2)
t.gamma <- delta/(sigma*sqrt(1/n1+1/n2))
t.power <- 1-pt(t.crit,n1+n2-2,ncp=t.gamma)+

pt(-t.crit,n1+n2-2,ncp=t.gamma)
return(t.power)
}



Power of the two-sample t-test

A clinical trial to test a new treatment against the standard treatment for colon
cancer is being designed. The investigators feel that the smallest meaningful
difference in tumour growth is 1cm. The standard deviation of tumour growth is
3cm. The investigators feel that they can enrol 50 subjects per arm. Will this
clinical trial have adequate power to detect a difference between the treatments?

I What are the parameters of interest?
I What are the null and alternative hypotheses?
I How can the power of the study be calculated?



Power of the two-sample t-test

twosampttestpow(.05,50,50,1,2,3)

[1] 0.3785749



Power of the two-sample t-test

I power.t.test() can calculate the number of subjects required to achieve
a certain power.

I Suppose the investigators want to know how many subjects per group
would have to be enrolled in each group to achieve 80% power under the
same conditions?

power.t.test(power = 0.8,delta = 1,sd = 3,sig.level = 0.05)

Two-sample t test power calculation

n = 142.2466
delta = 1

sd = 3
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group



Power of the two-sample t-test
The following plot shows power of the two-sample t-test as a function of the
difference θ = µ1 − µ2 to be detected and equal sample size per group.
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Power of the two-sample t-test

This plot shows power as a function of σ and sample size per group.
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Power of the two-sample t-test

In some studies instead of specifying the difference in treatment means and
standard deviation separately the ratio

ES = µ1 − µ2

σ

can be specified.
I ES is called the scaled effect size.
I Cohen (1992) suggests that effect sizes of 0.2, 0.5, 0.8 correspond to small,

medium , and large effects respectively.



Power of the two-sample t-test

Power as a function of effect size can be investigated.

The plot shows that for n1 = n2 = 10 the two-sample t-test has at least 80%
power for detecting effect sizes that are at least 1.3.
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