STA305/1004 - Class 7

September 26, 2019

Today's Class

- ▶ Sample size formulae two-samples means/proportions
- ▶ Calculating power via simulation

Problem

You are working as a statistician on the design of a two-arm clinical trial. The trial will compare means, μ_1,μ_2 of a continuous outcome (e.g., mean tumour size).

$$H_0:\theta=0 \text{ vs. } H_a:\theta\neq0,$$

$$\theta = \mu_1 - \mu_2.$$

Develop a formula for estimating sample size.

F

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Dr. Wassim Abida, a medical oncologist at Memorial Sloan Kettering Cancer Center, examined Bruce Fenstermacher, a patient taking part in a clinical trial. George Etheredge for The New York Times

By Gina Kolata

Aug. 12, 2017

With the arrival of two revolutionary treatment strategies, immunotherapy and personalized medicine, cancer researchers have found new hope — and a problem that is perhaps unprecedented in medical research.

Those one too means or animoutal account during in tax means aliminal

Sample size - known variance and equal allocation

Allocation refers to: a clinical trial design strategy used to assign participants to an arm of a study. egral

If the variance is known then the test statistic is

This is the test statistic of the two-sample z-test.

The power at
$$\theta = \theta_1$$
 is given by

Ls assuming the is $\theta = \theta_1$

is assuming the interval.

$$1-\beta = P\left(Z \geq z_{\alpha/2} - \frac{\theta_1}{\sigma\sqrt{1/n_1+1/n_2}}\right) + P\left(Z < -z_{\alpha/2} - \frac{\theta_1}{\sigma\sqrt{1/n_1+1/n_2}}\right).$$

Ignoring terms smaller than $\alpha/2$ and combining positive and negative θ

$$\textcircled{*}_{\beta \approx \Phi} \left(z_{\alpha/2} - \frac{|\theta_1|}{\sigma \sqrt{1/n_1 + 1/n_2}} \right).$$

Ho: MI-MZ=0 0= Mi-Mz 15 a Statistical

7, - 7z = Statistic. Ha: Mi-Mito The test Stat. is 71- 712 NN(0,1) (Sar (7, -92) under Ho (i.e., MI-M2=0)

The test rejects when $\left|\frac{Y_1-V_{12}}{\sigma \int V_{11}+V_{112}}\right| \geq \frac{2}{2} \chi$, $\frac{2}{2} \chi_{11}$ is the looli-dyth The power at $\theta = \theta_1$, $\theta_1 \neq 0$ percentile $1-\beta = P\left(\frac{\delta}{\delta} \ge \frac{2}{\delta}\alpha_{12}\right) + P\left(\frac{\delta}{\delta} \le -\frac{2}{\delta}\alpha_{1}\right) = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{1}).$ under the assumption = $P\left(\frac{\delta - \theta_{1}}{\delta} \ge \frac{2}{\delta}\alpha_{12} - \theta_{1}\right) + P\left(\frac{\delta - \theta_{1}}{\delta} \le \frac{2}{\delta}\alpha_{2} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{2} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{2} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ and $\frac{\delta}{\delta} = \frac{2}{\delta}(-\frac{2}{\delta}\alpha_{12}) + P\left(\frac{\delta}{\delta} - \theta_{1} \le \frac{2}{\delta}\alpha_{12} - \theta_{1}\right)$ 24 N(011). $= p\left(\frac{2}{2} + \frac{2}{6}\right) + p\left(\frac{2}{4} - \frac{2}{6}\right) + p\left(\frac{2}{4} - \frac{2}{6}\right)$ Consider two Cases: $\theta_1 > 0$, $\theta_1 < 0$ ignore ferms < d/2. Then derive (*).

Sample size - known variance and equal allocation

The sample size is obtained by solving

$$z_{\beta}+z_{\alpha/2}=\left(\frac{|\theta_1|}{\sigma\sqrt{1/n_1+1/n_2}}\right).$$

If we assume that there will be an equal allocation of subjects to each group then $n_1=n_2=n/2$, the total sample size for the phase III trial is

$$n = \frac{4\sigma^2 \left(z_{\beta} + z_{\alpha/2}\right)^2}{\theta^2}.$$

Sample size - known variance and unequal allocation

- In many trials it is desirable to put more patients into the experimental group to learn more about this treatment.
- If the patient allocation between the two groups is $r = n_1/n_2$ then $n_1 = r \cdot n_2$ then

$$n_2 = \frac{(1+1/r)\sigma^2 \left(z_\beta + z_{\alpha/2}\right)^2}{\theta^2} \text{ white entermoletary and 2 for unequal allocation is}$$
 An R function to compute the sample size in groups 1 and 2 for unequal allocation is
$$\text{size2z.uneq.test} \leftarrow \text{function(theta,alpha,beta,sigma,r)} \text{ with allocation}$$
 { zalpha $\leftarrow \text{qnorm}(1-\text{alpha/2})$

```
zbeta <- qnorm(1-beta)</pre>
n2 <- (1+1/r)*(sigma*(zalpha+zbeta)/theta)^2
n1 < - r*n2
return(c(n1,n2))}
```

Sample size - known variance and unequal allocation

What is the sample size required for 90% power to detect $\theta=1$ with $\sigma=2$ at the 5% level in a trial where two patients will be enrolled in the experimental arm for every patient enrolled in the control arm?

```
# sample size for theta =1, alpha=0.05,
# beta=0.1, sigma=2, r=2
# group 1 sample size (experimental group)
size2z.uneq.test(theta = 1,alpha = .05,beta = .1,sigma = 2,r = 2)[1]
[1] 126.0891
# group 2 sample size (control group)
size2z.uneq.test(theta = 1,alpha = .05,beta = .1,sigma = 2,r = 2)[2]
```

[1] 63.04454

Sample size - known variance and unequal allocation

The power of the two-sample z-test can be studied as a function of the allocation ratio r.

Power vs. allocation ratio with total sample size fixed n=168 alpha=0.05

The plot shows that imbalance typically leads to loss of power.

- In many clinical trials, the primary endpoint is dichotomous, for example, whether a patient has responded to the treatment, or whether a patient has experienced toxicity.
- ▶ Consider a two-arm randomized trial with binary outcomes. Let p_1 denote the response rate of the experimental drug, p_2 as that of the standard drug, and the difference is $\theta = p_1 p_2$.
- In case:

$$H_0: \theta = 0$$
 vs. $H_a: \theta \neq 0$,

where $\theta = p_1 - p_2$.

Let Y_{ik} be the binary outcome for subject i in arm k; that is,

$$Y_{ik} = \left\{ \begin{array}{ll} 1 & \text{with probability } p_k \\ 0 & \text{with probability } 1-p_k, \end{array} \right.$$

for $i=1,...,n_k$ and k=1,2. The sum of indendent and identically distributed Bernoulli random varaibles has a binomial distribution,

$$\sum_{i=1}^{n_k} Y_{ik} \sim Bin(n_k,p_k),\, k=1,2.$$

(Yin, pg. 173-174)

ibles has a binomial distribution,
$$\sum_{i=1}^{n_k} Y_{ik} \sim Bin(n_k, p_k), \, k=1,2.$$
 Sum of wheth
$$\sum_{i=1}^{n_k} Y_{ik} \sim Bin(n_k, p_k), \, k=1,2.$$
 Bernalli Bernalli Sum of the property of th

The sample proportion for group k is

$$\hat{p}_k = \bar{Y}_k = (1/n_k) \sum_{i=1}^{n_k} Y_{ik}, k = 1, 2,$$

and
$$E\left(\bar{Y}_{k}\right)=p_{k}$$
 and $Var\left(\bar{Y}_{k}\right)=\frac{p_{k}\left(1-p_{k}\right)}{n_{k}}.$

The goal of the clinical trial is to determine if there is a difference between the two groups using a binary endpoint. That is we want to test $H_0:\theta=0$ versus $H_0:\theta\neq0$.

The test statistic (assuming that ${\cal H}_0$ is true) is:

$$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} \stackrel{\bullet}{\sim} N(0, 1),$$

The test rejects at level α if and only if

$$|T| \ge z_{\alpha/2}$$
.

Using the same argument as the case with continuous endpoints and ignoring terms smaller than $\alpha/2$ we can solve for β

$$\beta \approx \Phi \left(z_{\alpha/2} - \frac{|\theta_1|}{\sqrt{p_1(1-p_1)/n_1 + p_2(1-p_2)/n_2}} \right). \label{eq:beta}$$

Using this formula to solve for sample size. If $n_1=r\cdot n_2$ then

$$n_2 = \frac{\left(z_{\alpha/2} + z_{\beta}\right)^2}{\theta^2} \left(p_1(1-p_1)/r + p_2(1-p_2)\right).$$

- ▶ The built-in R function power.prop.test() can be used to calculate sample size or power.
- ▶ For example suppose that the standard treatment for a disease has a response rate of 20%, and an experimental treatment is anticipated to have a response rate of 28%.
- ▶ The researchers want both arms to have an equal number of subjects. How many patients should be enrolled if the study will conduct a two-sided test at the 5% level with 80% power?

Two-sample comparison of proportions power calculation

```
n = 446.2054

p1 = 0.2

p2 = 0.28

sig.level = 0.05

power = 0.8

alternative = two.sided
```

NOTE: n is number in *each* group

- ▶ If the test statistic and distribution of the test statistic are known then the power of the test can be calculated via simulation.
- ▶ Consider a two-sample t-test with 30 subjects per group and the standard deviation of the clinical outcome is known to be 1.
- ▶ What is the power of the test $H_0: \mu_1 \mu_2 = 0$ versus $H_0: \mu_1 \mu_2 = 0.5$, at the 5% significance level?
- The power is the proportion of times that the test correctly rejects the null hypothesis in repeated sampling.

idea in R.

We can simulate a single study using the rnorm() command. Let's assume that $n_1=n_2=30, \mu_1=3.5, \mu_2=3, \sigma=1, \alpha=0.05.$

```
set.seed(2301) t.test(rnorm(30,mean=3.5,sd=1),rnorm(30,mean=3,sd=1),var.equal = T)

Two Sample t-test Size 30
```

data: rnorm(30, mean = 3.5, sd = 1) and rnorm(30, mean = 3, sd = 1) t = 2.1462, df = 58, p-value = 0.03605

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

0.03458122 0.99248595

sample estimates:

mean of x mean of y

3.339362 2.825828

Should you reject H_0 ?

- ▶ Suppose that 10 studies are simulated.
- ▶ What proportion of these 10 studies will reject the null hypothesis at the 5% level?
- ▶ To investigate how many times the two-sample t-test will reject at the 5% level the replicate() command will be used to generate 10 studies and calculate the p-value in each study.
- It will still be assumed that $n_1=n_2=30, \mu_1=3.5, \mu_2=3, \sigma=1, \alpha=0.05.$ set.seed(2301) pvals <- replicate(10, test(rnorm(30, mean=3.5, sd=1), rnorm(30, mean=3, sd=1), var.equal = T)\$p.value) pvals # print out 10 p-values $[1] \begin{tabular}{ll} 0.03604893 \begin{tabular}{ll} 0.14788381 \begin{tabular}{ll} 0.00317709 \begin{tabular}{ll} 0.09452230 \begin{tabular}{ll} 0.39173723 \end{tabular}$ #power is the number of times the test rejects at the 5% level sum(pvals<=0.05)/10

But, since we only simulated 10 studies the estimate of power will have a large standard error. So let's try simulating 10,000 studies so that we can obtain a more precise estimate of power.

[1] 0.4881

This is much closer to the theoretical power obtained from power.t.test().

```
power.t.test(n = 30,delta = 0.5,sd = 1,sig.level = 0.05)
```

Two-sample t test power calculation

n = 30
delta = 0.5
sd = 1
sig.level = 0.05
power = 0.477841
alternative = two.sided

NOTE: n is number in *each* group

- ► The built-in R functions power.t.test() and power.prop.test() don't have an option for calculating power where the there is unequal allocation of subjects between groups.
- ▶ These built-in functions don't have an option to investigate power if other assumptions don't hold (e.g., normality).
- One option is to simulate power for the scenarios that are of interest. Another option is to write your own function using the formula derived above.

- Suppose the standard treatment for a disease has a response rate of 20%, and an experimental treatment is anticipated to have a response rate of 28%
- ▶ The researchers want both arms to have an equal number of subjects.
- ▶ A power calculation above revealed that the study will require $446 \times 2 = 892$ patients for 80% power.
- ▶ What would happen to the power if the researchers put more patients in the experimental arm compared to the control arm?

- ▶ The number of subjects in the experimental arm that have a positive response to treatment will be an observation from a Bin(1500, 0.28).
- ▶ The number of subjects that have a positive response to the standard treatment will be an observation from a Bin(500,0.2).
- ▶ We can obtain simulated responses from these distributions using the rbinom() command in R.

```
set.seed(2301)
rbinom(1,1500,0.28)

[1] 403
rbinom(1,500,0.20)
```

[1] 89

▶ The p-value for this simulated study can be obtained using prop.test().

2-sample test for equality of proportions without continuity correction

```
data: c(rbinom(1, 1500, 0.28), rbinom(1, 500, 0.2)) out of c(1500, 500)
X-squared = 16.62, df = 1, p-value = 4.568e-05
alternative hypothesis: two.sided
95 percent confidence interval:
    0.05032654    0.13100680
sample estimates:
    prop 1    prop 2
0.2686667    0.1780000
```

Assume the standard treatment for a disease has a response rate of 20%, and an experimental treatment is anticipated to have a response rate of 28%.

[1] 1434

If the researchers enrol _____ subjects in the experimental arm, and ____ subjects in the standard arm then the power is _____, at the ____ significance level. Power was calculated by simualting ____ hypothetical studies.

Question

Respond at PollEv.com/nathantaback Text NATHANTABACK to 37607 once to join, then 1, 2, 3, 4, or 5

If the researchers enrol A subjects in the experimental arm, and B subjects in the standard arm then the power is C, at the D significance level. Power was calculated by simulating E hypothetical studies. The values A, B, C, D, E are:

A = 100, B = 300, C = 0.1434, D = 0.01, E = 400	1
A = 300, B = 100, C = 1434, D = 0.01, E = 10000	2
A = 300, B = 100, C = 0.1434, D = 0.01, E = 10000	3
A = 300, B = 100, C = 0.1434, D = 0.05, E = 10000	4
A = 100, B = 300, C = 0.1434, D = 0.05, E = 10000	5