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Today’s class

I ANOVA table

I ANOVA identity
I Degrees of freedom and ANOVA table
I Geometry of ANOVA
I Two estimates of the population variance
I Mean squares
I F statistic
I Assumptions
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Comparing more than two treatments

If interest is in designing an experiment to compare more than two treatments
then the previous designs will need to modified.

I A clinical trial comparing three drugs A, B, C to reduce duration of
intubation for patients on mechanical ventilation.

I Coagulation time of blood samples for animals receiving four di�erent diets
A, B, C, D.

What are the null and alternative hypotheses in these two scenarios?
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Blood Coagulation Study

I 24 animals were randomized to four treatments with 6 animals in each
group.

I How many possible treatment assignments?
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Blood Coagulation Study

I The data for coagulation times for blood samples drawn from 24 animals
receiving four di�erent diets A, B, C, and D are shown below.

A B C D
60 65 71 62
63 66 66 60
59 67 68 61
63 63 68 64
62 64 67 63
59 71 68 56

Treatment Average 61 66 68 61
Grand Average 64 64 64 64

Di�erence -3 2 4 -3
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Blood Coagulation Study

A B C D
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Coagulation time from 24 animals randomly allocated to four diets
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Analysis of Variance (ANOVA)

I An idea due to Fisher is to compare the variation in mean coagulation times
between the diets to the variation of coagulation times within a diet. These
two measures of variation are often summarized in an analysis of variance
(ANOVA) table.

I Fisher introduced the method in his 1925 book “Statistical Methods for
Research Workers”.

I The statistical procedure enables experimenters to answer several questions
at once.

I The prevailing method at the time was to test one factor at a time in an
experiment.
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Analysis of Variance (ANOVA)

I An idea due to Fisher is to compare the variation in mean coagulation times
between the diets to the variation of coagulation times within a diet. These
two measures of variation are often summarized in an analysis of variance
(ANOVA) table.

I Fisher introduced the method in his 1925 book “Statistical Methods for
Research Workers”.

I The statistical procedure enables experimenters to answer several questions
at once.

I The prevailing method at the time was to test one factor at a time in an
experiment. Could have 6 different experiments
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Analysis of Variance (ANOVA) table

I The between treatments variation and within treatment variation are two
components of the total variation in the response.

I In the coagulation study data we can break up each observation’s deviation
from the grand mean into two components: treatment deviations; and
residuals within treatment deviations.

I Let yij be the jth (j = 1, ...., 6) observation taken under treatment
i = 1, 2, 3, 4.

yij ≠ ȳ·· = (ȳi· ≠ ȳ··)¸ ˚˙ ˝
treatment deviation

+ (yij ≠ ȳi·)¸ ˚˙ ˝
residual deviation

yi· =
nÿ

j=1

yij , ȳi· = yi·/n,

y·· =
aÿ

i=1

nÿ

j=1

yij , ȳ·· = y··/N,
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Analysis of Variance (ANOVA) model

I Let yij be the jth observation taken under treatment i = 1, ..., a.

E(yij) = µi = µ + ·i ,

and Var(yij) = ‡2 and the observations are mutually independent.

I The parameter ·i is the ith treatment e�ect.
I The parameter µ is the overall mean.
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Analysis of Variance (ANOVA) model

We are interested in testing if the a treatment means are equal.

H0 : µ1 = · · · = µa vs. H1 : µi ”= µj , i ”= j.

There will be n observations under the ith treatment.

yi· =
nÿ

j=1

yij , ȳi· = yi·/n,

y·· =
aÿ

i=1

nÿ

j=1

yij , ȳ·· = y··/N,

where N = an is the total number of observations. The “dot” subscript notation
means sum over the subscript that it replaces.
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The ANOVA identity

The total sum of squares SST =
qa

i=1
qn

j=1 (yij ≠ ȳ··)2 can be written as

aÿ

i=1

nÿ

j=1

[(ȳi· ≠ ȳ··) + (yij ≠ ȳi·)]2

by adding and subtracting ȳi· to SST .

It can be shown that
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(yij ≠ ȳ··)2 = n
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(ȳi· ≠ ȳ··)2

¸ ˚˙ ˝
Sum of Squares Due to Treatment

+
aÿ

i=1

nÿ

j=1

(yij ≠ ȳi·)2

¸ ˚˙ ˝
Sum of Squares Due to Error

= SSTreat + SSE .
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The ANOVA identity

This is sometimes called the analysis of variance identity. It shows how the total
sum of squares can be split into two sum of squares: one part that is due to
di�erences between treatments; and one part due to di�erences within
treatments.



The ANOVA identity

A B C D
60 65 71 62
63 66 66 60
59 67 68 61
63 63 68 64
62 64 67 63
59 71 68 56

Treatment Average 61 66 68 61
Grand Average 64 64 64 64
Di�erence -3 2 4 -3

I The decomposition of the first observation y11 = 60 in diet A is

y11 ≠ ȳ·· = (ȳ1· ≠ ȳ··) + (y11 ≠ ȳ1·)
60 ≠ 64 = (61 ≠ 64) + (60 ≠ 61)

≠4 = ≠3 + ≠1

I If each observation is decomposed in this manner then there will be three
tables of residuals: total residuals; between treatment residuals; and within
treatment residuals.

¥
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Example - Blood coagulation study (SST )

The deviations from the grand average (yij ≠ ȳ··) are in the table below:

A B C D
-4 1 7 -2
-1 2 2 -4
-5 3 4 -3
-1 -1 4 0
-2 0 3 -1
-5 7 4 -8

The total sum of squares is obtained by squaring all the entries in this table and
summing: SST = (≠4)2 + (≠1)2 + · · · + (≠8)2 = 340.



Example - Blood coagulation study (SSTreat)

The between treatment deviations (ȳi· ≠ ȳ··) are in the table below:

A B C D
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3

The sum of squares due to treatment is obtained by squaring all the entries in
this table and summing: SSTreat = (≠3)2 + (2)2 + · · · + (≠3)2 = 228.



Example - Blood coagulation study (SSE )

The within treatment deviations (yij ≠ ȳi·) are in the table below:

A B C D
-1 -1 3 1
2 0 -2 -1

-2 1 0 0
2 -3 0 3
1 -2 -1 2

-2 5 0 -5

The sum of squares due to error (yij ≠ ȳi·) is obtained by squaring the entries in
this table and summing: SSE = (≠1)2 + (2)2 + · · · + (≠5)2 = 112.

340¸˚˙˝
SST

= 228¸˚˙˝
SSTreat

+ 112¸˚˙˝
SSE

.

Which illustrates the ANOVA identity for the blood coagulation study.



ANOVA - degrees of freedom

The deviations

I SSTreat is called the sum of squares due to treatments (i.e., between
treatments), and SSE is called the sum of squares due to error (i.e., within
treatments).

I There are an = N total observations. So SST has N ≠ 1 degrees of freedom.
I There are a treatment levels so SSTreat has a ≠ 1 degrees of freedom.
I Within each treatment there are n replicates with n ≠ 1 degrees of freedom.

There are a treatments. So, there are a(n ≠ 1) = an ≠ a = N ≠ a degrees of
freedom for error.



ANOVA - degrees of freedom

The deviations

I SSTreat is called the sum of squares due to treatments (i.e., between
treatments), and SSE is called the sum of squares due to error (i.e., within
treatments).

I There are an = N total observations. So SST has N ≠ 1 degrees of freedom.

I There are a treatment levels so SSTreat has a ≠ 1 degrees of freedom.
I Within each treatment there are n replicates with n ≠ 1 degrees of freedom.

There are a treatments. So, there are a(n ≠ 1) = an ≠ a = N ≠ a degrees of
freedom for error.



ANOVA - degrees of freedom

The deviations

I SSTreat is called the sum of squares due to treatments (i.e., between
treatments), and SSE is called the sum of squares due to error (i.e., within
treatments).

I There are an = N total observations. So SST has N ≠ 1 degrees of freedom.
I There are a treatment levels so SSTreat has a ≠ 1 degrees of freedom.

I Within each treatment there are n replicates with n ≠ 1 degrees of freedom.
There are a treatments. So, there are a(n ≠ 1) = an ≠ a = N ≠ a degrees of
freedom for error.



ANOVA - degrees of freedom

The deviations

I SSTreat is called the sum of squares due to treatments (i.e., between
treatments), and SSE is called the sum of squares due to error (i.e., within
treatments).

I There are an = N total observations. So SST has N ≠ 1 degrees of freedom.
I There are a treatment levels so SSTreat has a ≠ 1 degrees of freedom.
I Within each treatment there are n replicates with n ≠ 1 degrees of freedom.

There are a treatments. So, there are a(n ≠ 1) = an ≠ a = N ≠ a degrees of
freedom for error.



Geometry and the ANOVA Table

A B C D
-4 1 7 -2
-1 2 2 -4
-5 3 4 -3
-1 -1 4 0
-2 0 3 -1
-5 7 4 -8

A B C D
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3
-3 2 4 -3

A B C D
-1 -1 3 1
2 0 -2 -1

-2 1 0 0
2 -3 0 3
1 -2 -1 2

-2 5 0 -5

! } Total

} Etienne
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Geometry and the ANOVA Table

I Let a be the vector of deviations from the grand mean,

I Let b be the vector of deviations of treatment deviations
I Let c be the vector of within-treatment deviations.

a =(-4, -1, -5, -1, -2, -5, 1, 2, 3, -1, 0, 7, 7, 2, 4, 4, 3, 4, -2, -4, -3, 0, -1, -8),
b =(-3, -3, -3, -3, -3, -3, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, -3, -3, -3, -3, -3, -3),
c =(-1, 2, -2, 2, 1, -2, -1, 0, 1, -3, -2, 5, 3, -2, 0, 0, -1, 0, 1, -1, 0, 3, 2, -5).
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Geometry and the ANOVA Table

I The dot product of b and c, b · c, is

b*c

A B C D
3 -2 12 -3

-6 0 -8 3
6 2 0 0

-6 -6 0 -9
-3 -4 -4 -6
6 10 0 15

sum(b*c)

[1] 0

I Therefore, the vectors b and c are orthogonal.
I Thus, the vector a is the hypotenuse of a right triangle with sides b and c.

a = ( ai , alias )
b = ( be , be

, bs )

a. b = a , bit  azbut  9363
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Geometry and the ANOVA Table

Pythagoras’ theorem in n dimensions is |a|2 = |b|2 + |c|2, where
|a| =


a2

1 + · · · + a2n.

The ANOVA identity can be seen using Pythagoras’ theorem since

|a|2 = SST , |b|2 = SSTreat , |c|2 = SSE .

If there were only three observations then the vectors would be as shown below.

b

c

@
@

@
@
@

@
@@

a

The degrees of freedom are the dimensions in which the vectors are free to move
given the constraints.

a- (Lij
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Geometry and the ANOVA Table

Figure 1
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ANOVAs Two Estimates of the Population Variance (‡2
)

SSE =
aÿ

i=1

C
nÿ

j=1

(yij ≠ ȳi·)2

D

If the term inside the brackets is divided by n ≠ 1 then it is the sample variance
for the ith treatment

S
2
i =

qn
j=1 (yij ≠ ȳi·)2

n ≠ 1 , 1 = 1, ..., a.

Combining these a variances to give a single estimate of the common population
variance

(n ≠ 1)S2
1 + · · · + (n ≠ 1)S2

a
(n ≠ 1) + · · · + (n ≠ 1) = SSE

N ≠ a
.

Thus, SSE is a pooled estimate of the common variance ‡2 within each of the a

treatments.

in



ANOVAs Two Estimates of the Population Variance (‡2
)

If there were no di�erences between the a treatment means ȳi· we could use the
variation of the treatment averages from the grand average to estimate ‡2.

n
qa

i=1 (ȳi· ≠ ȳ··)2

a ≠ 1 = SSTreat
a ≠ 1

is an estimate of ‡2 when the treatment means are all equal.



ANOVAs Two Estimates of the Population Variance (‡2
)

I The analysis of variance identity gives two estimates of ‡2.

I One is based on the variability within treatments and one based on the
variability between treatments.

I If there are no di�erences in the treatment means then these two estimates
should be similar.

I If these estimates are di�erent then this could be evidence that the
di�erence is due to di�erences in the treatment means.
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ANOVA - Mean square error

The mean square for treatment is defined as

MSTreat = SSTreat
a ≠ 1

and the mean square for error is defined as

MSE = SSE
N ≠ a

.



ANOVA - F statistic

I SSTreat and SSE are independent.

I It can be shown that SSTreat/‡2 ≥ ‰2
a≠1 and SSE /‡2 ≥ ‰2

N≠a.
I Thus, if H0 : µ1 = · · · = µa is true then the ratio

F = MSTreat
MSE

≥ Fa≠1,N≠a.
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ANOVA - F statistic

I SSTreat and SSE are independent.
I It can be shown that SSTreat/‡2 ≥ ‰2

a≠1 and SSE /‡2 ≥ ‰2
N≠a.

I Thus, if H0 : µ1 = · · · = µa is true then the ratio

F = MSTreat
MSE

≥ Fa≠1,N≠a.
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ANOVA - F statistic

I SSTreat and SSE are independent.
I It can be shown that SSTreat/‡2 ≥ ‰2

a≠1 and SSE /‡2 ≥ ‰2
N≠a.

I Thus, if H0 : µ1 = · · · = µa is true then the ratio

F = MSTreat
MSE

≥ Fa≠1,N≠a.



ANOVA - F statistic

I In Fisher’s 1925 book that introduced ANOVA he included one F table for
various numerator and denominator degrees of freedom.

I The table gave the critical values for only the 5% points.
I As use of the method spread so did the use of the 5% level. (Stigler, 2008)
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ANOVA Table - Blood coagulation study

The ANOVA table for the coagulation data can be calculated in R.

aov.diets <- aov(y~diets,data=tab0401)
summary(aov.diets)

Df Sum Sq Mean Sq F value Pr(>F)
diets 3 228 76.0 13.57 4.66e-05 ***
Residuals 20 112 5.6
---
Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

In this example a ≠ 1 = 3, N ≠ a = 20, SSTreat = 228, SSE = 112, MSTreat =
228/3 = 76.0, MSE = 112/20 = 5.6, F = 76/5.6 = 13.57.

A the normal quantile plot  did not indicate

normality then which Values may be inaccurate ?

-

ANOVA
Identity

.

22813
-13-57

⇐ eaten )
O ✓

peg modify .( Error ) ✓

I 12120

←
→

9=4 24



ANOVA Table - Blood coagulation study

The observed F value of 13.57 is shown on the F3,20 distribution. The p-value of
the test is the area under the density to the right of 13.57 (red line). The 95%
critical value of the F3,20 is 3.10 (blue line). In other words,
P(F3,20 > 3.10) = 0.05.
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ANOVA Table - Blood coagulation study

The p-value could also be calculated directly using the cdf of the F3,20
distribution.

1-pf(q = 13.57,df1 = 3,df2 = 20)

[1] 4.66169e-05

I The small p-value indicates that the di�erence between at least one pair of
the treatment means is significantly di�erent from 0.

I The p-value does not indicate which pairs are significantly di�erent.
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General ANOVA

The general form of the ANOVA table is

Source of variation df Sum of squares Mean square F
Between treatments a ≠ 1 SSTreat MSTreat
Within treatments N ≠ a SSE MSE F = MSTreat

MSE

Total



ANOVA Assumptions

The calculations that make up an ANOVA table require no assumptions. You
could write 24 numbers in the ANOVA table and complete the table using the
ANOVA identity and definitions of mean square and F statistic. However, using
these numbers to make inferences about di�erences in treatment means will
require certain assumptions.



ANOVA Assumptions - Additive Model

1. Additive model.

yij = µ + ·i + ‘ij .

The parameters ·i are interpreted as the treatment e�ect of the i
th mean. That

is, if µi is the mean of i
th group and µ is the overall mean then ·i = µi ≠ µ.



ANOVA Assumptions - iid with common variance

2. Under the assumption that the errors ‘ij are independent and identically
distributed (iid) with common variance Var(‘ij) = ‡2, for all i , j then

E(MSTreat) =
aÿ

i=1

· 2
i + ‡2, E(MSE ) = ‡2.

If there are no di�erences between the treatment means then ·1 = · · · = ·4 = 0
and

qa
i=1 · 2

i = 0 then both MStreat and MSE would be estimates ‡2.



ANOVA Assumptions - errors are normally distributed

3. If ‘ij ≥ N(0, ‡2) then MSTreat and MSE are independent. Under the null
hypothesis that

qa
i=1 · 2

i = 0 the ratio

F = MSTreat
MSE

is the ratio of two independent estimates of ‡2. Therefore,

MSTreat
MSE

≥ Fa≠1,N≠a.



Example - checking the assumptions in the blood coagualtion study

1. The additive model assumption seems plausible since the observations from
each diet can be viewed as the sum of a common mean plus a random error
term.

2. The common variance assumption can be investigated by plotting the
residuals versus the fitted values of the ANOVA model. A plot of the
residuals versus fitted values can be used to investigate the assumption that
the residuals are randomly distributed and have constant variance. Ideally,
the points should fall randomly on both sides of 0, with no recognizable
patterns in the points.In the R this can be done using the following
commands.
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Example - checking the assumptions in the blood coagualtion study

plot(aov.diets$fitted.values,aov.diets$residuals,
ylab = "Residuals", xlab = "Fitted",
main = "Blood coagualtion study")

abline(h = 0) # add line at y=0
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Example - checking the assumptions in the blood coagualtion study

3. The normality of the residuals can be investigated using a normal
quantile-quantile plot.

qqnorm(aov.diets$residuals,
main = "Normal Q-Q Plot for blood coagulation study")

qqline(aov.diets$residuals)
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