October 29, 2019

Suppose that an investigator is interested in examining three components of a weight loss intervention. The three components are:

1. Keeping a food diary (yes/no)

Suppose that an investigator is interested in examining three components of a weight loss intervention. The three components are:

- 1. Keeping a food diary (yes/no)
- 2. Increasing activity (yes/no)

Suppose that an investigator is interested in examining three components of a weight loss intervention. The three components are:

- 1. Keeping a food diary (yes/no)
- 2. Increasing activity (yes/no)
- 3. Home visit (yes/no)

The investigator plans to investigate all $2x2x2 = 2^3 = 8$ combinations of experimental conditions.

The experimental conditions will be.

Expt condition	Keep food diary	Increase physical activity	Home visit	weight loss
1	No	No	No	<i>y</i> 1
2	No	No	Yes	<i>Y</i> 2
3	No	Yes	No	<i>y</i> 3
4	No	Yes	Yes	<i>Y</i> 4
5	Yes	No	No	<i>Y</i> 5
6	Yes	No	Yes	V6
7	Yes	Yes	No	Y7
8	Yes	Yes	Yes	<i>y</i> 8

To perform a factorial design, you select a fixed number of levels of each of a number of factors (variables) and then run experiments in all possible combinations.

• The factors can be quantitative or qualitative.

- ► The factors can be quantitative or qualitative.
- Two levels of a quantitative variable could be two different temperatures or two different concentrations.

- ► The factors can be quantitative or qualitative.
- Two levels of a quantitative variable could be two different temperatures or two different concentrations.
- Qualitative factors might be two types of catalysts or the presence and absence of some entity.

The notation $2^{3'}$ identifies: - the number of factors (3) - the number of levels of each factor (2) - how many experimental conditions are in the design ($2^3 = 8$)

Factorial experiments can involve factors with different numbers of levels.

Consider a $4^2 \times 3^2 \times 2^4$ design.

1. How many factors? $\lambda + \lambda + 1 = 5$

Consider a $4^2 \times 3^2 \times 2$ design.

 How many factors?
 How many levels of each factor? 2 factors with glevels in each 2 factors with 3 levels in each.
 1 factor with 2 levels.

Notation for factorial designs.

288= 42×32×2

Consider a $4^2 \times 3^2 \times 2$ design.

- 1. How many factors?
- 2. How many levels of each factor?
- 3. How many experimental conditions (runs)?

 In ANOVA the objective is to compare the individual experimental conditions with each other. In a factorial experiment the objective is generally to compare combinations of experimental conditions.

Expt condition	Keep food diary	Increase physical activity	Home visit	weight loss
1	No	No	No	<i>y</i> ₁
2	No	No	Yes	<i>Y</i> 2
3	No	Yes	No	<i>y</i> 3
4	No	Yes	Yes	<i>Y</i> 4
5	Yes	No	No	<i>y</i> 5
6	Yes	No	Yes	V6
7	Yes	Yes	No	у с У7
8	Yes	Yes	Yes	<i>y</i> ₈

e

- In ANOVA the objective is to compare the individual experimental conditions with each other. In a factorial experiment the objective is generally to compare combinations of experimental conditions.
- ► Let's consider the food diary study above. What is the effect of keeping a food diary?

	ч	4		
Expt condition	Keep food diary	Increase physical activity	Home visit	weight loss
1	No	No	No	y_1
2	No	No	Yes	<i>y</i> 2
3	No	Yes	No	<i>Y</i> 3
4	No	Yes	Yes	<i>y</i> 4
5	Yes	No	No	<i>Y</i> 5
6	Yes	No	Yes	<i>Y</i> 6
7	Yes	Yes	No	<i>Y</i> 7
8	Yes	Yes	Yes	<i>y</i> 8

- In ANOVA the objective is to compare the individual experimental conditions with each other. In a factorial experiment the objective is generally to compare combinations of experimental conditions.
- Let's consider the food diary study above. What is the effect of keeping a food diary?

Expt condition	Keep food diary	Increase physical activity	Home visit	weight loss
1	No	No	No	<i>y</i> ₁
2	No	No	Yes	y 2
3	No	Yes	No	<i>y</i> 3
4	No	Yes	Yes	<u>Y</u> 4
5	Yes	No	No	<i>y</i> 5
6	Yes	No	Yes	Y6
7	Yes	Yes	No	Y7
8	Yes	Yes	Yes	<i>y</i> 8

We can estimate the effect of food diary by comparing the mean of all conditions where food diary is set to NO (conditions 1-4) and mean of all conditions where food diary set to YES (conditions 5-8). This is also called the main effect of food diary, the adjective main being a reminder that this average is taken over the levels of the other factors.

Expt condition	Keep food diary	Increase physical activity	Home visit	weight loss
1	No	NZ	No	<i>y</i> 1
2	No	(No)	Yes	y 2
3	No	Yes	No	<i>Y</i> 3
4	No	Yes	Yes	<i>У</i> 4
5	Yes	(No)	No	<i>y</i> 5
6	Yes	(N)	Yes	<i>У</i> 6
7	Yes	Yes	No	У7
8	Yes	Yes	Yes	<i>y</i> 8

The main effect of food diary is:

$$\frac{y_1+y_2+y_3+y_4}{4}-\frac{y_5+y_6+y_7+y_8}{4}$$

1

The main effect of physical activity is:

$$\frac{v_{0}}{\frac{y_{1}+y_{2}+y_{5}+y_{6}}{4}}-\frac{y_{3}+y_{4}+y_{7}+y_{8}}{4}.$$

The main effect of home visit is:

No $(e_{S}, \frac{y_{1}+y_{3}+y_{5}+y_{7}}{4})$ $(y_{2}+y_{4}+y_{6}+y_{8})$

Question

A chemical reaction experiment was carried out with the objective of comparing if a new catalyst B would give higher yields than the old catalyst A, but yield is also known to vary with temperature (high versus low). Two runs measured yield using catalyst A at a high tempertaure, and two runs measured yield using catalyst B at a high temperture.

A 2 factorial design is the same as a 2x2 Factorial design. More generally a 2K factorial Gesign, K 21 is He Soure as 2x2x -- x2 design. K times How Can the wording be changed Such that A and B are true? The experimental runs would look like Run Castalyst Temp С А Ц 2 А L 3 В Ц 4 В I

Pilot plant investigation - example of factorial design

A pilot plant invsetiagtion employed a 2^3 factorial design (Box, Hunter, and Hunter (2005)) with

Factors	level 1	level 2
Temperature	160C°(-1)	180C°(+1)
Concentration	20% (-1)	40% (+1)
Catalyst	A (-1)	B(+1)

• Each data value recorded is for the response yield y averaged over two duplicate runs.

- ▶ 8 run design produces 12 comparisons
- ► Each edge of cube only one factor changed while other 2 held constant.
- Therefore experimenter that believes in only changing one factor at a time is satisfied.

modeled = TRUE

- ▶ 8 run design produces 12 comparisons
- ► Each edge of cube only one factor changed while other 2 held constant.
- Therefore experimenter that believes in only changing one factor at a time is satisfied.

Main effect of T:

modeled = TRUE

Special STA 305 Project/RMarkobun Tutorial This Week:

31-OCT, 12-1, BA1130 01 - Nov, 12-1, SS2135

Interaction effects - two factor interactions

$$TK = \frac{33 - 13}{2} = 10$$

Interaction plots - Temperature by catalyst

Interaction plots - Concentration by temperature

Temperature

Interaction plots - Concentration by catalyst

Catalyst

Three factor interactions

The temperature by concentration interaction when the catalyst is B (at it's +1 level) is:

Interaction TC =
$$\frac{(y_8 - y_7) - (y_6 - y_5)}{2} = \frac{(80 - 45) - (83 - 52)}{2} = 2.$$

The temperature by concentration interaction when the catalyst is A (at it's -1 level) is:

Interaction TC =
$$\frac{(y_4 - y_3) - (y_2 - y_1)}{2} = \frac{(68 - 54) - (72 - 60)}{2} = 1.$$

$$\mathsf{TCK} = \frac{2-1}{2} = \frac{1}{2}.$$

Three factor interaction

- Interactions are symmetric in all factors.
- It could have been defined as half the difference between the temperature-by-catalyst interactions at each of the two concentrations.
- Mostly rely on statistical software such as R.

- Each of the 8 responses in the table is the average of two (genuinely) replicated runs.
- Genuinely replicated run means that variation between runs made at same experimental conditions is a reflection of the total run-to-run variability.

run	Т	С	K	у
1	-1	-1	-1	60
2	1	-1	-1	72
3	-1	1	-1	54
4	1	1	-1	68
5	-1	-1	1	52
6	1	-1	1	83
7	-1	1	1	45
8	1	1	1	80

This is a 23 replicated factorial design.

 \blacktriangleright Randomization of the run order for all 16 runs ensures the replication is genuine.

run1 is order of the first run and run2 is order of the second run.

run1	run2	Т	С	K	y1	y2	diff
6	13	-1	-1	-1	59	61	-2
2	4	1	-1	-1	74	70	4
1	16	-1	1	-1	50	58	-8
5	10	1	1	-1	69	67	2
8	12	-1	-1	1	50	54	-4
9	14	1	-1	1	81	85	-4
3	11	-1	1	1	46	44	2
7	15	1	1	1	79	81	-2

- Replication not always feasible or easy.
- For the pilot plant experiment a run involved: cleaning the reactor; inserting the appropriate catalyst charge; and running the apparatus at a given concentration for 3 hours, and sampling output every 15 minutes.
- A genuine run involved taking all of these steps all over again!

- ▶ There are usually better ways to employ 16 independent runs than by fully replicating a 2³ factorial.
- Other designs can study four or five factors with a 16 run two-level design.

Estimate of error variance of the effects from replicated runs

Variance of the main effect of T:
$$\operatorname{Tor}_{-1}^{p} \operatorname{Low}_{-1}$$

 $\operatorname{Terr}_{-1}^{p} \operatorname{Tr}_{-1}^{p} \operatorname{Tr}_{-1}^{$

- Which effects are real and which can be explained by chance?
- A rough rule of thumb: any effect that is 2-3 times their standard error are not easily explained by chance alone.

Assume that the observations are independent and normally distributed then

effect/se (effect) $\sim t_8$.

▶ A 95% confidence interval can be calculated as:

```
effect \pm t_{8,.05/2} \times se (effect).
```

where $t_{8,.05/2}$ is the 97.5th percentile of the t_8 . This is obtained in R via the qt() function.

qt(p = 1-.025, df = 8)

[1] 2.306004

In the pilot plant study

effect $\pm 2.3 \times 1.4 =$ effect ± 3.2 .

- The main effect of a factor should be individually interpreted only if there is no evidence that the factor interacts with other factors.
- Which effects should be considered jointly and which independently?

- ▶ The effect of changing concentration over the ranges studied is to reduce yield by about 5 units. This is irrespective of the tested level of other variables.
- The effects of temperature and catalyst cannot be interpreted separately because of the large TK interaction. With catalyst A the temperature effect is 13 units and with catalyst B it is 33 units.

