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Today’s Class

Assessing significance in unreplicated factorial designs:
I Normal plots
I half-Normal plots
I Lenth’s method

ANOVA:
I Multiple comparisons
I Sample size for ANOVA



Assessing Significance in Unreplicated Factorial Designs

How can significance be assessed in unreplicated factorial designs?



Quantile-Quantile Plots

I Quantile-quantile (Q-Q) plots are useful for comparing distribution functions.
I If X is a continuous random variable with strictly increasing distribution function

F (x) then the pth quantile of the distribution is the value of xp such that,

F (xp) = p

or
xp = F −1(p).

I In a Q-Q plot, the quantiles of one distribution are plotted against another
distribution.

I Q-Q plots can be used to investigate if a set of numbers follows a certain
distribution.



Quantile-Quantile Plots

I Suppose that we have independent observations X1,X2, ...,Xn from a uniform
distribution on [0, 1] or Unif[0,1].

I The ordered sample values (also called the order statistics) are the values X(j) such
that

X(1) < X(2) < · · · < X(n)

.
I It can be shown that

E
(

X(j)
)

=
j

n + 1
.

I This suggests that if we plot

X(j) vs.
j

n + 1

then if the underlying distribution is Unif[0,1] then the plot should be roughly linear.



Quantile-Quantile Plots

I A continuous random variable with strictly increasing CDF FX can be transformed
to a Unif[0,1] by defining a new random variable Y = FX (X).

I Suppose that it’s hypothesized that X follows a certain distribution function with
CDF F .

I Given a sample X1,X2, ...,Xn plot

F (X(k)) vs.
k

n + 1

or equivalently
X(k) vs. F −1

( k
n + 1

)
I X(k) can be thought of as empirical quantiles and F −1

(
k

n+1

)
as the hypothesized

quantiles.
I The quantile assigned to X(k) is not unique.

I Instead of assigning it k
n+1 it is often assigned k−0.5

n . In practice it makes little
difference which definition is used.



Normal Quantile-Quantile Plots
The cumulative distribution function (CDF) of the normal has an S-shape.
x <- seq(-4,4,by=0.1)
plot(x,pnorm(x),type="l")
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Normal Quantile-Quantile Plots

The normality of a set of data can be assessed by the following method.
I Let r(1) < ... < r(N) denote the ordered values of r1, ..., rN .
I A test of normality for a set of data is to plot the ordered values r(i) of the data

versus pi = (i − 0.5)/N.
I If the plot has the same S-shape as the normal CDF then this is evidence that the

data come from a normal distribution.



Normal Quantile-Quantile Plots
I A plot of r(i) vs. pi = (i − 0.5)/N, i = 1, ...,N for a random sample of 1000

simulated from a N(0, 1).
N <- 1000;x <- rnorm(N);p <- ((1:N)-0.5)/N
plot(sort(x),p)
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Normal Quantile-Quantile Plots

I It can be shown that Φ(ri ) has a uniform distribution on [0, 1].
I This implies that E(Φ(r(i))) = i/(N + 1) (this is the expected value of the jth

order statistic from a uniform distribution over [0, 1].
I This implies that the N points (pi ,Φ(r(i))) should fall on a straight line.
I Now apply the Φ−1 transformation to the horizontal and vertical scales. The N

points (
Φ−1(pi ), r(i)

)
,

form the normal probability plot of r1, ..., rN .
I If r1, ..., rN are generated from a normal distribution then a plot of the points(

Φ−1(pi ), r(i)
)
, i = 1, ...,N should be a straight line.



Normal Quantile-Quantile Plots

In R qnorm() is Φ−1.
set.seed(2503)
N <- 1000
x <- rnorm(N)
p <- (1:N) / (N + 1) # the vector i/(N+1), i = 1,...,N.
plot(qnorm(p), sort(x),

ylab = "Sample Quantiles - sort(x)",
xlab = "Theoretical Quatiles - qnorm(p)")

abline(a = 0, b = 1) # add the line y=x
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Normal Quantile-Quantile Plots

We usually use the built in function qqnorm() (and qqline() to add a straight line for
comparison) to generate normal Q-Q plots. Note that R uses a slightly more general
version of quantile (pi = (1− a)/(N + (1− a)− a), where a = 3/8, if N ≤ 10, a = 1/2,
if N > 10.
qqnorm(x);qqline(x)
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Normal Quantile-Quantile Plots

A marked (systematic) deviation of the plot from the straight line would indicate that:

1. The normality assumption does not hold.
2. The variance is not constant.



Normal Quantile-Quantile Plots
x <- runif(1000)
hist(x,main = "Sample from uniform")
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Normal Quantile-Quantile Plots
qqnorm(x,main = "Sample from uniform");qqline(x)
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Normal Quantile-Quantile Plots
x1 <- rnorm(100,mean = 0,sd = 1);x2 <- rnorm(100,mean = 0,sd = 5)
x3 <- rnorm(100,mean = 0,sd = 8); x <- c(x1,x2,x3)
hist(x,main = "Sample from three normals")
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Normal Quantile-Quantile Plots
qqnorm(x);qqline(x)
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Normal plots in factorial experiments

I A major application is in factorial designs where the r(i) are replaced by ordered
factorial effects.

I Let θ̂(1) < θ̂(2) < · · · < θ̂(N) be N ordered factorial estimates.
I If we plot

θ̂(i) vs.Φ−1(pi ). i = 1, ...,N.

then factorial effects θ̂i that are close to 0 will fall along a straight line. Therefore,
points that fall off the straight line will be declared significant.



Normal plots in factorial experiments

The rationale is as follows:

1. Assume that the estimated effects θ̂i are N(θ, σ) (estimated effects involve
averaging of N observations and CLT ensures averages are nearly normal for N as
small as 8).

2. If H0 : θi = 0, i = 1, ...,N is true then all the estimated effects will be zero.

3. The resulting normal probability plot of the estimated effects will be a straight line.

4. Therefore, the normal probability plot is testing whether all of the estimated effects
have the same distribution (i.e. same means).

I When some of the effects are nonzero the corresponding estimated effects will tend
to be larger and fall off the straight line.



Normal plots in factorial experiments

Positive effects fall above the line and negative effects fall below the line.
set.seed(10)
x1 <- rnorm(10,0,1); x2 <- rnorm(5,10,1); x3 <- rnorm(5,-10,1)
x <- c(x1,x2,x3)
hist(x, breaks = 10)
qqnorm(x); qqline(x)
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Example - 23 design for studying a chemical reaction

A process development experiment studied four factors in a 24 factorial design.
I amount of catalyst charge 1,
I temperature 2,
I pressure 3,
I concentration of one of the reactants 4.
I The response y is the percent conversion at each of the 16 run conditions. The

design is shown below.



Example - 24 design for studying a chemical reaction

x1 x2 x3 x4 conversion
-1 -1 -1 -1 70
1 -1 -1 -1 60
-1 1 -1 -1 89
1 1 -1 -1 81
-1 -1 1 -1 69
1 -1 1 -1 62
-1 1 1 -1 88
1 1 1 -1 81
-1 -1 -1 1 60
1 -1 -1 1 49
-1 1 -1 1 88
1 1 -1 1 82
-1 -1 1 1 60
1 -1 1 1 52
-1 1 1 1 86
1 1 1 1 79

The design is not replicated so it’s not possible to estimate the standard errors of the
factorial effects.



Example - 24 design for studying a chemical reaction

fact1 <- lm(conversion~x1*x2*x3*x4,data=tab0510a)
round(2*fact1$coefficients,2)

(Intercept) x1 x2 x3 x4 x1:x2
144.50 -8.00 24.00 -0.25 -5.50 1.00
x1:x3 x2:x3 x1:x4 x2:x4 x3:x4 x1:x2:x3
0.75 -1.25 0.00 4.50 -0.25 -0.75

x1:x2:x4 x1:x3:x4 x2:x3:x4 x1:x2:x3:x4
0.50 -0.25 -0.75 -0.25



Example - 24 design for studying a chemical reaction

A normal plot of the factorial effects is obtained by using the function DanielPlot() in
the FrF2 library.
library(FrF2)
DanielPlot(fact1, autolab=F,

main="Normal plot of effects from process development study")
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Example 1

Which effects are not explained by chance?

##
## Call:
## lm.default(formula = y ~ A * B * C, data = dat)
##
## Residuals:
## ALL 8 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.90361 NA NA NA
## A1 -0.52770 NA NA NA
## B1 -0.01836 NA NA NA
## C1 2.60717 NA NA NA
## A1:B1 -3.25821 NA NA NA
## A1:C1 0.93739 NA NA NA
## B1:C1 -0.43695 NA NA NA
## A1:B1:C1 0.31787 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 7 and 0 DF, p-value: NA



Example 1
Which effects are not explained by chance according to the normal plot?
FrF2::DanielPlot(mod1,code=TRUE,autolab=F,datax=F)
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Example 1
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Example 2

Which effects are not explained by chance?

##
## Call:
## lm.default(formula = y ~ A * B * C, data = dat)
##
## Residuals:
## ALL 8 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.275 NA NA NA
## A1 -2.150 NA NA NA
## B1 0.300 NA NA NA
## C1 -0.950 NA NA NA
## A1:B1 -0.125 NA NA NA
## A1:C1 1.125 NA NA NA
## B1:C1 -1.575 NA NA NA
## A1:B1:C1 1.500 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 7 and 0 DF, p-value: NA



Example 2
Which effects are not explained by chance according to the normal plot?
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Example 2
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Half-Normal Plots

I A related graphical method is called the half-normal probability plot.
I Let ∣∣θ̂∣∣

(1)
<
∣∣θ̂∣∣

(2)
< · · · <

∣∣θ̂∣∣
(N)

.

denote the ordered values of the unsigned factorial effect estimates.
I Plot them against the coordinates based on the half-normal distribution - the

absolute value of a normal random variable has a half-normal distribution.
I The half-normal probability plot consists of the points∣∣θ̂∣∣

(i)
vs.Φ−1(0.5 + 0.5[i − 0.5]/N). i = 1, ...,N.



Half-Normal Plots

I An advantage of this plot is that all the large estimated effects appear in the upper
right hand corner and fall above the line.

I The half-normal plot for the effects in the process development example is can be
obtained with DanielPlot() with the option half=TRUE.



Half-Normal Plots - 24 design for studying a chemical reaction
library(FrF2)
DanielPlot(fact1,half=TRUE,autolab=F,

main="Normal plot of effects from process development study")
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Half-Normal Plots - 24 design for studying a chemical reaction
Compare with full Normal plot.
library(FrF2)
DanielPlot(fact1,half=F,autolab=F,

main="Normal plot of effects from process development study")
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Multiple Comparisons

Suppose that experimental units were randomly assigned to three treatment groups.
The hypothesis of intrest is:

H0 : µ1 = µ2 = µ3 vs.H1 : µi 6= µj .

Now, suppose that we reject H0 at level α. Which pairs of means are significantly
different from each other at level α? There are

(3
2

)
= 3 possibilites.

1. µ1 6= µ2
2. µ1 6= µ3
3. µ2 6= µ3



Multiple Comparisons

Suppose that k = 3 separate (independent) hypothesis tests at level α tests are
conducted:

H0k : µi = µj vs.H1k : µi 6= µj ,

When H0 is true, P (reject H0) = α⇒ 1− P (do not reject H0) = 1− (1− α).

So, if H0 is true then

P
(
reject at least one H0k

)
= 1− P

(
do not reject any H0k

)
This is the same as

1− P (do not reject H01and do not reject H02and do not reject H03 )

or since the hypotheses are independent

1− P (do not reject H01 ) P (do not reject H02 ) P (do not reject H03 ) = 1− (1− α)3

If α = 0.05 then the probability that at least one H0 will be falsely rejected is
1− (1− .05)3 = 0.14, which is almost three times the type I error rate.



Multiple Comparisons



Multiple Comparisons
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Multiple Comparisons

In general if
H0 : µ1 = µ2 = · · · = µk vs.H1 : µi 6= µj .

If c independent hypotheses are conducted then the probability

P
(
reject at least one H0k

)
= 1− (1− α)c

is called the family-wise error rate.

The pairwise error rate is P
(
reject H0k

)
= α for any c.



The Multiple Comparisons Problem

I The multiple comparison problem is that multiple hypotheses are tested level α
which increases the probability that at least one of the hypotheses will be falsely
rejected (family-wise error rate).

I If treatment means are significantly different from the ANOVA F test then
researchers will usually want to explore where the differences lie.

I Is it appropriate to test for differences looking at all pairwise comparisons?
I Testing all possible pairs increases the type I error rate.
I This means the chance that there is a higher probability, beyond the pre-stated

type I error rate (e.g. 0.05), that that a significant difference is detected when the
truth is that no difference exists.



Example



The Bonferroni Method

To test for the difference between the ith and jth treatments, it is common to use the
two-sample t test. The two-sample t statistic is

tij =
ȳj· − ȳi·

σ̂
√

1/nj + 1/ni
,

where ȳj· is the average of the ni observations for treatment j and σ̂ is
√

MSE from the
ANOVA table.

Treatments i and j are declared significantly different at level α if

|tij | > tN−k,α/2,

where tN−k,α/2 is the upper α/2 percentile of a tN−k .



The Bonferroni Method

The total number of pairs of treatment means that can be tested is

c =
(k
2
)

=
k(k − 1)

2
.

The Bonferroni method for testing H0 : µi = µj vs. H0 : µi 6= µj rejects H0 at level α if

|tij | > tN−k,α/2c ,

where c denotes the number of pairs being tested.



The Bonferroni Method

In R the function pairwise.t.test() can be used to compute Bonferroni adjusted
p-values.

This is illustrated below for the blood coagualtion study.
pairwise.t.test(tab0401$y,tab0401$diets,p.adjust.method = "bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: tab0401$y and tab0401$diets
##
## A B C
## B 0.00934 - -
## C 0.00031 0.95266 -
## D 1.00000 0.00934 0.00031
##
## P value adjustment method: bonferroni

There are signifciant differences at the 5% level between diets A and B, A and C, B and
D, and C and D using the Bonferroni method.



The Bonferroni Method

For comparison the unadjusted p-values are also calculated.
pairwise.t.test(tab0401$y,tab0401$diets,p.adjust.method = "none")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: tab0401$y and tab0401$diets
##
## A B C
## B 0.0016 - -
## C 5.2e-05 0.1588 -
## D 1.0000 0.0016 5.2e-05
##
## P value adjustment method: none

The significant differences are the same using the unadjusted p-values but the p-values
are larger then the p-values adjusted using the Bonferroni method.



The Bonferroni Method

A 100(1− α)% simultaneous confidence interval for c pairs µi − µj is

ȳj· − ȳi· ± tN−k,α/2c σ̂
√

1/nj + 1/ni .

After identifying which pairs are different, the confidence interval quantifies the range of
plausible values for the differences.



The Bonferroni Method - coagulation study

The treatment means can be obtained from the table below.

A B C D
60 65 71 62
63 66 66 60
59 67 68 61
63 63 68 64
62 64 67 63
59 71 68 56

Treatment Average 61 66 68 61
Grand Average 64 64 64 64
Difference -3 2 4 -3



The Bonferroni Method - coagulation study

σ̂ =
√

MSE can be obtained from the ANOVA table.
anova(lm(y~diets,data=tab0401))

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## diets 3 228 76.0 13.571 4.658e-05 ***
## Residuals 20 112 5.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The upper .05/(2 · 6) = 0.004 percentile of the t24−4 can be obtained with the t
quantile function in R qt().
qt(p = 1-0.004,df = 20)

## [1] 2.945349



The Bonferroni Method - coagulation study

Plugging in these values to the confidence interval formula we can obtain a Bonferroni
adjusted 95% confidence interval for µB − µA:

66− 61± 2.95
√
5.6
√

1/6 + 1/6

The lower and upper limits can be calculated in R.
66-61 - qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6) # lower limit

## [1] 0.9758869
66-61 + qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6) # upper limit

## [1] 9.024113

The 95% confidence interval for µB − µA is ( 0.98, 9.02 ).



The Tukey Method

I The only difference between the Tukey and Bonferroni methods is in the choice of
the critical value.

I Treatments i and j are declared significantly different at level α if

|tij | >
1
√
2

qk,N−k,α,

I tij is the observed value of the two-sample t-statistic
I qk,N−k,α is the upper α percentile of the Studentized range distribution with

parameters k and N − k degrees of freedom.
I The CDF and inverse CDF of the Studentized Range Distribution is available in R

via the functions ptukey() and qtukey() respectively.



The Tukey Method

A 100(1− α)% simultaneous confidence interval for c pairs µi − µj is

ȳj· − ȳi· ±
1
√
2

qk,N−k,ασ̂
√

1/nj + 1/ni .

The Bonferroni method is more conservative than Tukey’s method. In other words, the
simutaneous confidence intervals based on the Tukey method are shorter.



The Tukey Method

I In the coagualtion study N = 24, k = 4 so the 5% critical value of the Studentized
range distribution is obtained using the the inverse CDF function qtukey() for this
distribution.

I The argument lower.tail=FALSE is used so we obtain the upper percentile of the
distribution (i.e., the value of x such that P (X > x) = 0.05).

qtukey(p = .05,nmeans = 4,df = 20,lower.tail = FALSE)

## [1] 3.958293



The Tukey Method

I Let’s obtain the Tukey p-value and confidence interval for µB − µA.
I The observed value of the test statistic is

qobs =
√
2|tAB |,

where
tAB =

¯yA· − ¯yB·

σ̂
√

1/nA + 1/nB
.

(sqrt(2)*(66-61))/(sqrt(5.6)*sqrt(1/6+1/6))

## [1] 5.175492



The Tukey Method

The p-value

P
(

q4,20 > qobs
)

is then obtained using the CDF of the Studentized range distribution
1-ptukey(q = sqrt(2)*5/sqrt(2*5.6/6),nmeans = 4,df = 20)

## [1] 0.007797788



The Tukey Method

The 95% limits of the Tukey confidence interval for µB − µA is
tuk.crit <- qtukey(p=.05,nmeans=4,df=20,lower.tail=FALSE)
#lower limit
round(5-(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 1.18
#upper limit
round(5+(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 8.82



The Tukey Method

The width of the Tukey confidence interval for µB − µA is
round((1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 3.82

The width of Bonferroni µB − µA is
round(qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 4.02



The Tukey Method

I This shows that the Tukey confidence interval is shorter than Bonferroni confidence
intervals.

I The command TukeyHSD() can be used to obtain all the Tukey confidence
intervals and p-values for an ANOVA.



The Tukey Method

TukeyHSD(aov(y~diets,data=tab0401))

round(TukeyHSD(aov(y~diets,data=tab0401))$diets,2)

## diff lwr upr p adj
## B-A 5 1.18 8.82 0.01
## C-A 7 3.18 10.82 0.00
## D-A 0 -3.82 3.82 1.00
## C-B 2 -1.82 5.82 0.48
## D-B -5 -8.82 -1.18 0.01
## D-C -7 -10.82 -3.18 0.00



The Tukey Method
plot(TukeyHSD(aov(y~diets,data=tab0401)))
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Sample size for ANOVA - Designing a study to compare more than two
treatments

I Consider the hypothesis that k means are equal vs. the alternative that at least two
differ.

I What is the probability that the test rejects if at least two means differ?
I Power = 1− P(Type II error) is this probability.



Sample size for ANOVA - Designing a study to compare more than two
treatments

The null and alternative hypotheses are:

H0 : µ1 = µ2 = · · · = µk vs.H1 : µi 6= µj .

The test rejects at level α if

MSTreat/MSE ≥ Fk−1,N−K ,α.

The power of the test is

1− β = P
(

MSTreat/MSE ≥ Fk−1,N−K ,α
)
,

when H0 is false.



Sample size for ANOVA - Designing a study to compare more than two
treatments

When H0 is false it can be shown that:
I MSTreat/σ

2 has a non-central Chi-square distribution with k − 1 degrees of
freedom and non-centrality parameter δ.

I MSTreat/MSE has a non-central F distribution with the numerator and denominator
degrees of freedom k − 1 and N − k respectively, and non-centrality parameter

δ =

∑k
i=1 ni (µi − µ̄)2

σ2
,

where ni is the number of observations in group i , µ̄ =
∑k

i=1 µi/k, and σ2 is the within
group error variance .

This is dentoted by Fk−1,N−k (δ).



Direct calculation of Power

I The power of the test is

P
(

Fk−1,N−k (δ) > Fk−1,N−K ,α
)
.

I The power is an increasing function δ
I The power depends on the true values of the treatment means µi , the error

variance σ2, and sample size ni .
I If the experimentor has some prior idea about the treament means and error

variance, and the sample size (number of replications) the formula above will
calculate the power of the test.



Blood coagulation example - sample size
Suppose that an investigator would like to replicate the blood coagulation study with
only 3 animals per diet. In this case k = 4, ni = 3. The treatment means from the
initial study are:

Diet A B C D
Average 61 66 68 61

lm.diets <- lm(y~diets,data=tab0401);round(summary(lm.diets)$coefficients,2)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61 0.97 63.14 0
## dietsB 5 1.37 3.66 0
## dietsC 7 1.37 5.12 0
## dietsD 0 1.37 0.00 1
anova(lm.diets)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## diets 3 228 76.0 13.571 4.658e-05 ***
## Residuals 20 112 5.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Blood coagulation example - sample size

I µ1 = 61, µ2 = 66, µ3 = 68, µ4 = 61.
I The error variance σ2 was estimated as MSE = 5.6.
I Assuming that the estimated values are the true values of the parameters, the

non-centrality parameter of the F distribution is

δ = 3×
(

(61− 64)2 + (66− 64)2 + (68− 64)2 + (61− 64)2
)
/5.6 = 20.35714



Blood coagulation example - sample size

If we choose α = 0.05 as the significance level then F3,20,0.05 = 3.0983912. The power
of the test is then

P (F3,20(20.36) > 3.10) = 0.94.

This was calculated using the CDF for the F distribution in R pf().
1-pf(q = 3.10,df1 = 3,df2 = 20,ncp = 20.36)

## [1] 0.9435208



Calculating power and sample size using the pwr library

I There are several libraries in R which can calculate power and sample size for
statistical tests. The library pwr() has a function

I pwr.anova.test(k = NULL, n = NULL, f = NULL, sig.level = 0.05, power
= NULL)

for computing power and sample size.
I k Number of groups
I n Number of observations (per group)
I f Effect size
I The effect size is the square root of the non-centrality parameter of the non-central

F distribution.

f =

√∑k
i=1 ni (µi − µ̄)2

σ2
.

where ni is the number of observations in group i , µ̄ =
∑k

i=1 µi/k, and σ2 is the within
group error variance.



Calculating power and sample size using the pwr library

In the previous example δ = 20.35714 so f =
√
20.35714 = 4.5118887.

library(pwr)
pwr.anova.test(k = 4,n = 3,f = 4.5)

##
## Balanced one-way analysis of variance power calculation
##
## k = 4
## n = 3
## f = 4.5
## sig.level = 0.05
## power = 1
##
## NOTE: n is number in each group



Calculating power and sample size using the pwr library
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Calculating power using simulation

The general procedure for simulating power is:

1. Use the underlying model to generate random data with (a) specified sample sizes,
(b) parameter values that one is trying to detect with the hypothesis test, and (c)
nuisance parameters such as variances.

2. Run the estimation program (e.g., t.test(),lm() ) on these randomly generated
data.

3. Calculate the test statistic and p-value.

4. Do Steps 1–3 many times, say, N, and save the p-values. The estimated power for
a level alpha test is the proportion of observations (out of N) for which the p-value
is less than alpha.



Calculating power using simulation

One of the advantages of calculating power via simulation is that we can investigate
what happens to power if, say, some of the assumptions behind one-way ANOVA are
violated.



Calculating power using simulation - R program
#Simulate power of ANOVA for three groups

NSIM <- 1000 # number of simulations
res <- numeric(NSIM) # store p-values in res

mu1 <- 2; mu2 <- 2.5;mu3 <- 2 # true mean values of treatment groups
sigma1 <- 1; sigma2 <- 1; sigma3 <- 1 #variances in each group
n1 <- 40; n2 <- 40; n3 <- 40 #sample size in each group

for (i in 1:NSIM) # do the calculations below N times
{

# generate sample of size n1 from N(mu1,sigma1^2)
y1 <- rnorm(n = n1,mean = mu1,sd = sigma1)
# generate sample of size n2 from N(mu2,sigma2^2)
y2 <- rnorm(n = n2,mean = mu2,sd = sigma2)
# generate sample of size n3 from N(mu3,sigma3^2)
y3 <- rnorm(n = n3,mean = mu3,sd = sigma3)
y <- c(y1,y2,y3) # store all the values from the groups
# generate the treatment assignment for each group
trt <- as.factor(c(rep(1,n1),rep(2,n2),rep(3,n3)))
m <- lm(y~trt) # calculate the ANOVA
res[i] <- anova(m)[1,5] # p-value of F test
}
sum(res<=0.05)/NSIM # calculate p-value

## [1] 0.598


