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Today’s Class

Assessing significance in unreplicated factorial designs:
I Normal plots
I half-Normal plots
I Lenth’s method

ANOVA:
I Multiple comparisons
I Sample size for ANOVA-



Assessing Significance in Unreplicated Factorial Designs

How can significance be assessed in unreplicated factorial designs?

In replicated design .
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Quantile-Quantile Plots

I Quantile-quantile (Q-Q) plots are useful for comparing distribution functions.
I If X is a continuous random variable with strictly increasing distribution function

F (x) then the pth quantile of the distribution is the value of xp such that,

F (xp) = p

or
xp = F

≠1(p).

I In a Q-Q plot, the quantiles of one distribution are plotted against another
distribution.

I Q-Q plots can be used to investigate if a set of numbers follows a certain
distribution.
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Quantile-Quantile Plots

I Suppose that we have independent observations X1, X2, ..., Xn from a uniform
distribution on [0, 1] or Unif[0,1].

I The ordered sample values (also called the order statistics) are the values X(j) such
that

X(1) < X(2) < · · · < X(n)

.
I It can be shown that

E

!
X(j)

"
= j

n + 1
.

I This suggests that if we plot

X(j) vs. j

n + 1

then if the underlying distribution is Unif[0,1] then the plot should be roughly linear.



Quantile-Quantile Plots

I A continuous random variable with strictly increasing CDF FX can be transformed
to a Unif[0,1] by defining a new random variable Y = FX (X).

I Suppose that it’s hypothesized that X follows a certain distribution function with
CDF F .

I Given a sample X1, X2, ..., Xn plot

F (X(k)) vs. k

n + 1

or equivalently
X(k) vs. F

≠1
1

k

n + 1

2

I X(k) can be thought of as empirical quantiles and F
≠1

!
k

n+1

"
as the hypothesized

quantiles.
I The quantile assigned to X(k) is not unique.

I Instead of assigning it k

n+1 it is often assigned k≠0.5
n

. In practice it makes little
di�erence which definition is used.



Normal Quantile-Quantile Plots
The cumulative distribution function (CDF) of the normal has an S-shape.
x <- seq(-4,4,by=0.1)
plot(x,pnorm(x),type="l")
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Normal Quantile-Quantile Plots

The normality of a set of data can be assessed by the following method.
I Let r(1) < ... < r(N) denote the ordered values of r1, ..., rN .
I A test of normality for a set of data is to plot the ordered values r(i) of the data

versus pi = (i ≠ 0.5)/N.
I If the plot has the same S-shape as the normal CDF then this is evidence that the

data come from a normal distribution.

- what position is thevalue Vii, in the Seg.



Normal Quantile-Quantile Plots
I A plot of r(i) vs. pi = (i ≠ 0.5)/N, i = 1, ..., N for a random sample of 1000

simulated from a N(0, 1).
N <- 1000;x <- rnorm(N);p <- ((1:N)-0.5)/N
plot(sort(x),p)
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Normal Quantile-Quantile Plots

I It can be shown that �(ri ) has a uniform distribution on [0, 1].
I This implies that E(�(r(i))) = i/(N + 1) (this is the expected value of the jth

order statistic from a uniform distribution over [0, 1].
I This implies that the N points (pi , �(r(i))) should fall on a straight line.
I Now apply the �≠1 transformation to the horizontal and vertical scales. The N

points !
�≠1(pi ), r(i)

"
,

form the normal probability plot of r1, ..., rN .
I If r1, ..., rN are generated from a normal distribution then a plot of the points!

�≠1(pi ), r(i)
"

, i = 1, ..., N should be a straight line.
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Normal Quantile-Quantile Plots

In R qnorm() is �≠1.
set.seed(2503)
N <- 1000
x <- rnorm(N)
p <- (1:N) / (N + 1) # the vector i/(N+1), i = 1,...,N.

plot(qnorm(p), sort(x),
ylab = "Sample Quantiles - sort(x)",
xlab = "Theoretical Quatiles - qnorm(p)")

abline(a = 0, b = 1) # add the line y=x
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Normal Quantile-Quantile Plots

We usually use the built in function qqnorm() (and qqline() to add a straight line for
comparison) to generate normal Q-Q plots. Note that R uses a slightly more general
version of quantile (pi = (1 ≠ a)/(N + (1 ≠ a) ≠ a), where a = 3/8, if N Æ 10, a = 1/2,
if N > 10.
qqnorm(x);qqline(x)
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Normal Quantile-Quantile Plots

A marked (systematic) deviation of the plot from the straight line would indicate that:

1. The normality assumption does not hold.
2. The variance is not constant.



Normal Quantile-Quantile Plots
x <- runif(1000)
hist(x,main = "Sample from uniform")
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Normal Quantile-Quantile Plots
qqnorm(x,main = "Sample from uniform");qqline(x)
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Normal Quantile-Quantile Plots
x1 <- rnorm(100,mean = 0,sd = 1);x2 <- rnorm(100,mean = 0,sd = 5)
x3 <- rnorm(100,mean = 0,sd = 8); x <- c(x1,x2,x3)
hist(x,main = "Sample from three normals")
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Normal Quantile-Quantile Plots
qqnorm(x);qqline(x)
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Normal plots in factorial experiments

I A major application is in factorial designs where the r(i) are replaced by ordered
factorial e�ects.

I Let ◊̂(1) < ◊̂(2) < · · · < ◊̂(N) be N ordered factorial estimates.
I If we plot

◊̂(i) vs. �≠1(pi ). i = 1, ..., N.

then factorial e�ects ◊̂i that are close to 0 will fall along a straight line. Therefore,
points that fall o� the straight line will be declared significant.

22 factorial design
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Normal plots in factorial experiments

The rationale is as follows:

1. Assume that the estimated e�ects ◊̂i are N(◊, ‡) (estimated e�ects involve
averaging of N observations and CLT ensures averages are nearly normal for N as
small as 8).

2. If H0 : ◊i = 0, i = 1, ..., N is true then all the estimated e�ects will be zero.

3. The resulting normal probability plot of the estimated e�ects will be a straight line.

4. Therefore, the normal probability plot is testing whether all of the estimated e�ects
have the same distribution (i.e. same means).

I When some of the e�ects are nonzero the corresponding estimated e�ects will tend
to be larger and fall o� the straight line.
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Normal plots in factorial experiments
Positive e�ects fall above the line and negative e�ects fall below the line.
set.seed(10)
x1 <- rnorm(10,0,1); x2 <- rnorm(5,10,1); x3 <- rnorm(5,-10,1)
x <- c(x1,x2,x3)
hist(x, breaks = 10)
qqnorm(x); qqline(x)
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Example - 23 design for studying a chemical reaction

A process development experiment studied four factors in a 24 factorial design.
I amount of catalyst charge 1,
I temperature 2,
I pressure 3,
I concentration of one of the reactants 4.
I The response y is the percent conversion at each of the 16 run conditions. The

design is shown below.



Example - 24 design for studying a chemical reaction

x1 x2 x3 x4 conversion
-1 -1 -1 -1 70
1 -1 -1 -1 60

-1 1 -1 -1 89
1 1 -1 -1 81

-1 -1 1 -1 69
1 -1 1 -1 62

-1 1 1 -1 88
1 1 1 -1 81

-1 -1 -1 1 60
1 -1 -1 1 49

-1 1 -1 1 88
1 1 -1 1 82

-1 -1 1 1 60
1 -1 1 1 52

-1 1 1 1 86
1 1 1 1 79

The design is not replicated so it’s not possible to estimate the standard errors of the
factorial e�ects.



Example - 24 design for studying a chemical reaction

fact1 <- lm(conversion~x1*x2*x3*x4,data=tab0510a)
round(2*fact1$coefficients,2)

(Intercept) x1 x2 x3 x4 x1:x2
144.50 -8.00 24.00 -0.25 -5.50 1.00
x1:x3 x2:x3 x1:x4 x2:x4 x3:x4 x1:x2:x3
0.75 -1.25 0.00 4.50 -0.25 -0.75

x1:x2:x4 x1:x3:x4 x2:x3:x4 x1:x2:x3:x4
0.50 -0.25 -0.75 -0.25

Remember that 2x B , = factorial
effect that Pi

corresponds to .

O



Example - 24 design for studying a chemical reaction

A normal plot of the factorial e�ects is obtained by using the function DanielPlot() in
the FrF2 library.
library(FrF2)
DanielPlot(fact1, autolab=F,

main="Normal plot of effects from process development study")
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Example 1

Which e�ects are not explained by chance?

##
## Call:
## lm.default(formula = y ~ A * B * C, data = dat)
##
## Residuals:
## ALL 8 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.90361 NA NA NA
## A1 -0.52770 NA NA NA
## B1 -0.01836 NA NA NA
## C1 2.60717 NA NA NA
## A1:B1 -3.25821 NA NA NA
## A1:C1 0.93739 NA NA NA
## B1:C1 -0.43695 NA NA NA
## A1:B1:C1 0.31787 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 7 and 0 DF, p-value: NA

23 design .
- 3 main
errors.

- 3 2-way
interactions .

- I 3 way
interaction.



Example 1
Which e�ects are not explained by chance according to the normal plot?
FrF2::DanielPlot(mod1,code=TRUE,autolab=F,datax=F)
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Example 1
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Example 2

Which e�ects are not explained by chance?

##
## Call:
## lm.default(formula = y ~ A * B * C, data = dat)
##
## Residuals:
## ALL 8 residuals are 0: no residual degrees of freedom!
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.275 NA NA NA
## A1 -2.150 NA NA NA
## B1 0.300 NA NA NA
## C1 -0.950 NA NA NA
## A1:B1 -0.125 NA NA NA
## A1:C1 1.125 NA NA NA
## B1:C1 -1.575 NA NA NA
## A1:B1:C1 1.500 NA NA NA
##
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 7 and 0 DF, p-value: NA

Unreplicated 23 design .



Example 2
Which e�ects are not explained by chance according to the normal plot?
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Example 2
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Half-Normal Plots

I A related graphical method is called the half-normal probability plot.
I Let --◊̂

--
(1)

<
--◊̂

--
(2)

< · · · <
--◊̂

--
(N)

.

denote the ordered values of the unsigned factorial e�ect estimates.
I Plot them against the coordinates based on the half-normal distribution - the

absolute value of a normal random variable has a half-normal distribution.
I The half-normal probability plot consists of the points

--◊̂
--
(i)

vs. �≠1(0.5 + 0.5[i ≠ 0.5]/N). i = 1, ..., N.



Half-Normal Plots

I An advantage of this plot is that all the large estimated e�ects appear in the upper
right hand corner and fall above the line.

I The half-normal plot for the e�ects in the process development example is can be
obtained with DanielPlot() with the option half=TRUE.



Half-Normal Plots - 24 design for studying a chemical reaction
library(FrF2)
DanielPlot(fact1,half=TRUE,autolab=F,

main="Normal plot of effects from process development study")
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Half-Normal Plots - 24 design for studying a chemical reaction
Compare with full Normal plot.
library(FrF2)
DanielPlot(fact1,half=F,autolab=F,

main="Normal plot of effects from process development study")
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Multiple Comparisons

Suppose that experimental units were randomly assigned to three treatment groups.
The hypothesis of intrest is:

H0 : µ1 = µ2 = µ3 vs. H1 : µi ”= µj .

Now, suppose that we reject H0 at level –. Which pairs of means are significantly
di�erent from each other at level –? There are

!3
2

"
= 3 possibilites.

1. µ1 ”= µ2
2. µ1 ”= µ3
3. µ2 ”= µ3

Suppose F test from ANOVA is Significant o°
.
we

would reject Ho .
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Multiple Comparisons

Suppose that k = 3 separate (independent) hypothesis tests at level – tests are
conducted:

H0k
: µi = µj vs. H1k

: µi ”= µj ,

When H0 is true, P (reject H0) = – ∆ 1 ≠ P (do not reject H0) = 1 ≠ (1 ≠ –).

So, if H0 is true then

P

!
reject at least one H0k

"
= 1 ≠ P

!
do not reject any H0k

"

This is the same as

1 ≠ P (do not reject H01 and do not reject H02 and do not reject H03 )

or since the hypotheses are independent

1 ≠ P (do not reject H01 ) P (do not reject H02 ) P (do not reject H03 ) = 1 ≠ (1 ≠ –)3

If – = 0.05 then the probability that at least one H0 will be falsely rejected is
1 ≠ (1 ≠ .05)3 = 0.14, which is almost three times the type I error rate.

By
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Multiple Comparisons ANOVA Source Ss df MS F p
Tvt XX
error T-05

.

50% X 44%

50% ✓ 56%



ANOVA poll .
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ANOVA gives information

about if a Significant
difference exists

,
but

doesn't tell you which

differences are Significant .
To tell which differences

are Significant use
several two Sample

£- tests .
But now

the problem is that the

typeI error rate
increases from original
typeterror

rate .



Multiple Comparisons
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Multiple Comparisons

In general if
H0 : µ1 = µ2 = · · · = µk vs. H1 : µi ”= µj .

If c independent hypotheses are conducted then the probability

P

!
reject at least one H0k

"
= 1 ≠ (1 ≠ –)c

is called the family-wise error rate.

The pairwise error rate is P

!
reject H0k

"
= – for any c.

for some ity
'

.

- assuming that
Ho is true.

e. g., if K =3

Mi tax↳
⇐
¥:*'m



The Multiple Comparisons Problem

I The multiple comparison problem is that multiple hypotheses are tested level –
which increases the probability that at least one of the hypotheses will be falsely
rejected (family-wise error rate).

I If treatment means are significantly di�erent from the ANOVA F test then
researchers will usually want to explore where the di�erences lie.

I Is it appropriate to test for di�erences looking at all pairwise comparisons?
I Testing all possible pairs increases the type I error rate.
I This means the chance that there is a higher probability, beyond the pre-stated

type I error rate (e.g. 0.05), that that a significant di�erence is detected when the
truth is that no di�erence exists.

I- o 956
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stop for Test#2 .


