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Today's Class

Assessing significance in unreplicated factorial designs:

> Normal plots
> half-Normal plots
> Lenth’'s method

ANOVA:

» Multiple comparisons

»—Sample-sizeforANOVA-



Assessing Significance in Unreplicated Factorial Designs
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How can significance be assessed in unreplicated factorial designs?
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Quantile-Quantile Plots

> Quantile-quantile (Q-Q) plots are useful for comparing distribution functions.

» If X is a continuous random variable with strictly increasing distribution function
F(x) then the pth quantile of the distribution is the value of x, such that,

—_— 5 )
F(XP):p W\ 5?&1’ (64

xp = F1(p). Xp

or

> In a Q-Q plot, the quantiles of one distribution are plotted against another
distribution.

> Q-Q plots can be used to investigate if a set of numbers follows a certain
distribution.



Quantile-Quantile Plots

> Suppose that we have independent observations Xi, X2, ..., X, from a uniform
distribution on [0, 1] or Unif[0,1].

» The ordered sample values (also called the order statistics) are the values X(j) such
that

X(l) < X(2) <0< X(n)

v

It can be shown that
_
E(Xyp) = s
» This suggests that if we plot

J
n+1

X(j) vs.

then if the underlying distribution is Unif[0,1] then the plot should be roughly linear.



Quantile-Quantile Plots

> A continuous random variable with strictly increasing CDF Fx can be transformed
to a Unif[0,1] by defining a new random variable Y = Fx(X).

> Suppose that it's hypothesized that X follows a certain distribution function with
CDF F.

> Given a sample Xi, Xa, ..., X, plot

F(X .
X) Vs =

or equivalently

k
X . F1
(k) Ve (n+1)
k

> Xk can be thought of as empirical quantiles and F-1 (m) as the hypothesized
quantiles.

> The quantile assigned to X(y) is not unique.

k—0.5
n

> Instead of assigning it Tj—l it is often assigned
difference which definition is used.

. In practice it makes little



Normal Quantile-Quantile Plots

The cumulative distribution function (CDF) of the normal has an S-shape.

x <- seq(-4,4,by=0.1)
plot(x,pnorm(x),type="1")
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Normal Quantile-Quantile Plots

The normality of a set of data can be assessed by the following method.

> Let r(y) < ... < r(y) denote the ordered values of ry, ..., ry.
> A test of normality for a set of data is to plot the ordered values r(;) of the data

versus p; = (i — 0.5)/N. WhhaA- ST (5 Mre ot iy v Yoo Seo
> If the plot has the same S-shape as the normal CDF then this is evidence that the

data come from a normal distribution.




Normal Quantile-Quantile Plots

> A plot of r(jy vs. pj = (i —0.5)/N,i=1,..., N for a random sample of 1000
simulated from a N(0,1).
N <- 1000;x <- rnorm(N);p <- ((1:N)-0.5)/N Pos‘(ku"\ *
plot(sort(x),p) —V
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Normal Quantile-Quantile Plots

> It can be shown that ®(r;) has a uniform distribution on [0, 1].
> This implies that E(®(r(;y)) = i/(N + 1) (this is the expected value of the jth @‘ll
order statistic from a uniform distribution over [0, 1]. 0 V\fC
> This implies that the N points (p;, ®(r(;))) should fall on a straight line.
/> Now apply the ®~1 transformation to the horizontal and vertical scales. The N

peStTaOInts ST T Qave UskeeS-
W Seq 3(\'\6":1 RS (©7(P1) 1) »
form the normal probability plot of r, ..., ry.

> If ri,...,ry are generated from a normal distribution then a plot of the points
( (p,) ) i=1,..., N should be a straight line.




Normal Quantile-Quantile Plots

In R gqnorm() is &~ 1.
set.seed(2503)
N <- 1000 # \pac ol\aServarhon - S ”,& C e
x <- rnorm(N)
p <- (1:N) / (N + 1)/# the vector i/(N+1), % = 1,...,N.
plot (gnorm(p t(x),

ylab = "Sample Quantiles - sort(x)",

xlab = "Theoretical Quatiles - gnorm(p)")
abline(a = 0, b = 1) # add the line y=z

1

]

-2 -1

Sample Quantiles - sort(x)

-3

Theoretical Quatiles — gnorm(p)



Normal Quantile-Quantile Plots

We usually use the built in function qggnorm() (and qgline() to add a straight line for
comparison) to generate normal Q-Q plots. Note that R uses a slightly more general

version of quantile (p; = (1 — a)/(N + (1 — a) — a), where a=3/8, if N <10, a=1/2,
if N> 10.

qgqnorm(x) ;qqline(x)

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles



Normal Quantile-Quantile Plots

A marked (systematic) deviation of the plot from the straight line would indicate that:

1. The normality assumption does not hold.
2. The variance is not constant.



Normal Quantile-Quantile Plots
x <- runif (1000)

hist(x,main = "Sample from uniform")
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Normal Quantile-Quantile Plots

qqnorm(x,main = "Sample from uniform");qqline(x)

Sample from uniform
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Normal Quantile-Quantile Plots - yJte\\ _— N(o, 5*)
x1 <- rnorm(100,mean = O0,sd = 1);x2 <- rnorm(100,mean = 0,sd = 5)
x3 <- rnorm(100,mean = 0,sd = 8); x <- c(x1,x2,x3)
ist(x,main = "Sample from three normals")

Sample from three normals
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Normal Quantile-Quantile Plots

qqnorm(x) ;qqline(x)

Normal Q-Q Plot
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Normal plots in factorial experiments &"— 1&[/,(3,.;,\,\ AQS\SH
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» A major application is in factorial designs where the r(i) are replaced by ordered
factorial effects.

> Let é(l) < é(2) << é(N) be N ordered factorial estimates.

> |f we plot .
Oy vs. o Yp).i=1,...,N.

then factorial effects 6; that are close to 0 will fall along a straight line. Therefore,
points that fall off the straight line will be declared significant.
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Normal plots in factorial experiments

The rationale is as follows:

1. Assume that the estimated effects 6; are N(G,gf (estimated effects involve
averaging of N observations and CLT ensures averages are nearly normal for N as
all as 8).

2. If Hy:6; =0, i=1,..., N is true then all the estimated effects will be zero.
\~ 3. The resulting normal probability plot of the estimated effects will be a straight line.

w 4. Therefore, the normal probability plot is testing whether all of the estimated effects
Q&é have the same distribution (i.e. same means). N Coy [rl>

> When some of the effects are nonzero the corresponding estimated effects will tend
to be larger and fall off the straight line.



Normal plots in factorial experiments

Positive effects fall above the line and negative effects fall below the line.
set.seed(10) N¢es ) \J(.\a)ﬁ’\ N ™ R
x1 <- rnorm(10,0,1); x2 <- rnorm(5,10,1); x3 <- rnorm(5,-10,1)

x <= c(x1,x2,x3) €— DU Sogehhwr v ore e chees
hist(x, breaks = 10) P

qgnorm(x) ; gqline(x)

Histogram of x Normal Q-QPlot
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Example - 23 design for studying a chemical reaction

A process development experiment studied four factors in a 2* factorial design.

> amount of catalyst charge 1,

temperature 2,

pressure 3,

concentration of one of the reactants 4.

The response y is the percent conversion at each of the 16 run conditions. The
design is shown below.

vvyyvYyy



Example - 2* design for studying a chemical reaction

x1 x2 x3 x4 conversion
-1 -1 -1 -1 70
1 -1 -1 -1 60
-1 1 -1 -1 89
1 1 -1 -1 81
-1 -1 1 -1 69
1 -1 1 -1 62
-1 1 1 -1 88
1 1 1 -1 81
-1 -1 -1 1 60
1 -1 -1 1 49
-1 1 -1 1 88
1 1 -1 1 82
-1 -1 1 1 60
1 -1 1 1 52
-1 1 1 1 86
1 1 1 1 79

The design is not replicated so it's not possible to estimate the standard errors of the

factorial effects.



Example - 2* design for studying a chemical reaction

5. = /Qu:—\orrdx o fect M‘%L
Rowomdoer Pk X B3 Correspond] Ao

factl <- lm(conversion~x1*x2#*x3*x4,data=tab0510a)
round (2*fact1$coefficients,2)

(Intercept) x1 x2 x3 x4 x1:x2
144.50 -8.00 24.00 -0.25 -5.50 1.00
x1:x3 x2:x3 x2:x4 x3:x4 x1:x2:x3

0.75 -1.25 4.50 -0.25 -0.75

x1:x2:x4 x1:x3:x4 x2:x3:x4 x1:x2:x3:%x4
0.50 -0.25 -0.75 -0.25



Example - 2* design for studying a chemical reaction

A normal plot of the factorial effects is obtained by using the function DanielPlot () in
the FrF2 library.
library (FrF2)
DanielPlot(factl, autolab=F,
main="Normal plot of effects from process development study")

Normal plot of effects from process development study

yaianN
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Example 1

P
Which effects are not explained by chance? (9\ A.ZS fjv\ R 3 wAaa i\
## 2 HlfT
## Call:
## Im.default(formula =y ~ A * B * C, data = dat) _ 'B '}\—ng
##
## Residuals: \W’SW\J )
## ALL 8 residuals are 0: no residual degrees of freedom!
i - L Swey
## Coefficients:
## Estimate Std. Error t value Pr(>|tl) Lvﬁ""r"b—“b\‘
## (Intercept) -0.90361 NA NA NA
## Al -0.52770 NA NA NA
## Bl -0.01836 NA NA NA
## C1 2.60717 NA NA NA
## A1:B1 -3.256821 NA NA NA
## A1:C1 0.93739 NA NA NA
## B1:C1 -0.43695 NA NA NA
## A1:B1:C1 0.31787 NA NA NA
##
## Residual standard error: NaN on O degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN
## F-statistic: NaN on 7 and O DF, p-value: NA



Example 1
Which effects are not explained by chance according to the normal plot?

FrF2::DanielPlot (mod1,code=TRUE,autolab=F,datax=F)

Normal Plot for y
1 4 | \
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normal scores
A=A,B=B, C=C



Example

Sample Quantiles
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Example 2 U nveplecoted Q‘S A"S‘.SW

Which effects are not explained by chance?

##

## Call:

## Im.default(formula = y ~ A * B * C, data = dat)

##

## Residuals:

## ALL 8 residuals are 0: no residual degrees of freedom!

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.275 NA NA NA

## Al -2.150 NA NA NA

## Bl 0.300 NA NA NA

## C1 -0.950 NA NA NA

## A1:B1 -0.125 NA NA NA

## Al1:C1 1.125 NA NA NA

## B1:C1 -1.575 NA NA NA

## A1:B1:C1 1.500 NA NA NA

##

## Residual standard error: NaN on O degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: NaN

## F-statistic: NaN on 7 and O DF, p-value: NA



Example 2

Which effects are not explained by chance according to the normal plot?

Normal Plot for y
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Example 2

Normal Q-Q Plot
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Half-Normal Plots

v

A related graphical method is called the half-normal probability plot.
Let

v

0

< |9|(2) <<
denote the ordered values of the unsigned factorial effect estimates.

Plot them against the coordinates based on the half-normal distribution - the
absolute value of a normal random variable has a half-normal distribution.
The half-normal probability plot consists of the points

’(N)'

\{

v

]é|(i) vs.®1(0.5 + 0.5[i — 0.5]/N).i=1,..., N.



Half-Normal Plots

> An advantage of this plot is that all the large estimated effects appear in the upper
right hand corner and fall above the line.

> The half-normal plot for the effects in the process development example is can be
obtained with DanielPlot () with the option half=TRUE.



Half-Normal Plots - 2% design for studying a chemical reaction

library (FrF2)
DanielPlot (factl,half=TRUE,autolab=F,
main="Normal plot of effects from process development study")

Normal plot of effects from process development study
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Half-Normal Plots - 2* design for studying a chemical reaction
Compare with full Normal plot.

library(FrF2)
DanielPlot(factl,half=F,autolab=F,
main="Normal plot of effects from process development study")

Normal plot of effects from process development study
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Multiple Comparisons

Suppesc T AeskArem
wou\d  reelt Wo -
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Suppose that experimental units were randomly assigned to three treatment groups.
The hypothesis of intrest is:
Ho : p1 = p2 = pavs. Hy @ pi # ;.

Now, suppose that we reject Hp at level a. Which pairs of means are significantly
different from each other at level a? There are (2) = 3 possibilites.

Loy #p . - S 1283
2. /'Li -‘,é,uj, \‘\el . P\l - p"_l., Pw'l/

3. p2 # p3 \XH, . [\M'(?M"’ ‘r\’.\—x, 2 [“\—Lf(k s

2 Pa= A
\* 1y° P\V:HV\?



Multiple Comparisons

Suppose that k = 3 separate (independent) hypothesis tests at level « tests are
conducted:

Lo
(ﬁkﬁ—é{' Ho, @ pi = pjvs. Hy, @ pi # pj,

When Hy is true,| P (reject Hy) = of = 1 — P (do not reject Hp) =1 — (1 — ).

So, if Hp is true then A =) do not Epch
v
\/\
L owe
This is the same as >/ Sawe Q/\;aw‘\" wdepr

1 — P (do not reject Hp,and do not reject Hp,and do not reject Ho,)

or since the hypotheses are independent - P ﬂ\ N A" QO A?’)

4)\‘) A\ ) ‘\7_\ A"} [/ 328 \"‘A&P«-\’MV\ P (AL(_\ A@Q})lP(ADp@L) P(A'SJ
1 — P (do not reject Ho, ) P (do not reject Hp,) P (do not reject Hp,) =1 — (1 — a)3k
‘- o) (=) L= &)
If & = 0.05 then the probability that at least one Hp will be falsely rejected is
1— (1 —.05)% = 0.14, which is almost three times the type | error rate. o £ .0 C.
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Multiple Comparisons

A clinical trial comparing four treatment means using an
ANOVA model at the 5% level found a significant F test. If all
pairs of treatment means are compared then the probability

of falsely declaring that at least one pair of treatment means
is significantly different is:

:1 Respond at PollEv.com/nathantaback
D Text NATHANTABACK to 37607 once to join, then Aor B

Co% less than orequalto 0.05 X A «4%
Co% greaterthan0.05 . — B 5%
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Multiple Comparisons

Family-wise error rate a=0.05

0.4-

—wise error rate

Family:

0.1-

50
Number of hypothesis tests



Multiple Comparisons

In general if -
Ho:py=p2=--=pevs. Hi: pj # p. /FoFSO'”’“- (Ai[ .

If ¢ independent hypotheses are conducted then the probability L .
ey Prok He s e
P (reject at least one Hok) =1-(1-o)°

is called the family-wise error rate. e "9y A{) W23
The pairwise error rate is P (reject Hok) = o for any c. M ,+ e

My %ty
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The Multiple Comparisons Problem

> The multiple comparison problem is that multiple hypotheses are tested level «
which increases the probability that at least one of the hypotheses will be falsely
rejected (family-wise error rate). l— -°L§°’

> If treatment means are significantly different from the ANOVA F test then
researchers will usually want to explore where the differences lie.

> |s it appropriate to test for differences looking at all pairwise comparisons?
» Testing all possible pairs increases the type | error rate.

» This means the chance that there is a higher probability, beyond the pre-stated
type | error rate (e.g. 0.05), that that a significant difference is detected when the
truth is that no difference exists.

Sloe For Test A



