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Multiple Comparisons

» Suppose that experimental units were randomly assigned to three treatment groups.
> The hypothesis of intrest is: Hy : p1 = po = pzvs. Hy @ pi # py.

> Suppose that we reject Hp at level a.

> Which pairs of means are significantly different from each other at level a?

> There are (g) = 3 possibilites.

1o # w2
2. p1 # ps
3. p2 # p3



Multiple Comparisons

> Suppose that k = 3 separate (independent) hypothesis tests at level « tests are
conducted: Ho, : pi = pjvs. Hy, @ pi # pj.

> When Hp is true, o = P (reject Hy) = 1 — P (do not reject Hp) =1 — (1 — «).
> If Hp is true then P (reject at least one Hok) =1-P (do not reject any Hok)
»1—-P (do not reject any Hok) =

1 — P (do not reject Hp,and do not reject Hp,and do not reject Ho,)

> Since the hypotheses are independent:
1—P (do not reject Ho, ) P (do not reject Ho,) P (do not reject Hp,) = 1—(1—a)?

> If & = 0.05 then the probability that at least one Hp will be falsely rejected is
1 — (1 —.05)3 = 0.14, which is almost three times the type | error rate.



Multiple Comparisons

Family-wise error rate a=0.05

Family-wise error rate

50
Number of hypothesis tests

10.0



Multiple Comparisons

Ho:pa = po == pgvs. Hy: pj # pj.
If ¢ independent hypotheses are conducted then the probability
P (reject at least one Hok) =1-(1-w)°

is called the family-wise error rate.

The pairwise error rate is P (reject Hok) = « for any c.



The Multiple Comparisons Problem

> The multiple comparison problem is that multiple hypotheses are tested level «
which increases the probability that at least one of the hypotheses will be falsely
rejected (family-wise error rate).

> If treatment means are significantly different from the ANOVA F test then
researchers usually want to explore which means are different.

> |s it appropriate to test for differences looking at all pairwise comparisons?
» Testing all possible pairs increases the type | error rate.

» This means that there is a higher probability, beyond the pre-stated type | error
rate (e.g. 0.05), that that a significant difference is detected when the truth is that
no difference exists.
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The Bonferroni Method

To test for the difference between the ith and jth treatments, it is common to use the
two-sample t test. The two-sample t statistic is

__ Y=Y
tj = —F/——,
&w/l/anrl/n;

where y;. is the average of the n; observations for treatment j and & is v/ MSg from the
ANOVA table.

Treatments i and j are declared significantly different at level « if

[tj| > tn—k,a/2,

where ty_ /2 is the upper /2 percentile of a ty_.



The Bonferroni Method

The total number of pairs of treatment means that can be tested is

k k(k—1
o= () =5

The Bonferroni method for testing Hop : pi = pj vs. Ho : pi # pj rejects Ho at level o if

[tij] > tn_i,a/2¢

where ¢ denotes the number of pairs being tested.



The Bonferroni Method

In R the function pairwise.t.test() can be used to compute Bonferroni adjusted
p-values.

This is illustrated below for the blood coagualtion study.
pairwise.t.test(tab0401$y,tab0401$diets,p.adjust .method = "bonferroni")

##

## Pairwise comparisons using t tests with pooled SD
##

## data: tab0401$y and tab0401$diets

##

## A B C

## B 0.00934 - -

## C 0.00031 0.95266 -

## D 1.00000 0.00934 0.00031

##

## P value adjustment method: bonferroni

There are signifciant differences at the 5% level between diets A and B, A and C, B and
D, and C and D using the Bonferroni method.



The Bonferroni Method

For comparison the unadjusted p-values are also calculated.
pairwise.t.test(tab0401$y,tab0401$diets,p.adjust.method = "none")

##

## Pairwise comparisons using t tests with pooled SD
##

## data: tab0401$y and tab0401$diets

##

# A B C

## B 0.0016 - -

## C 5.2e-05 0.1588 -

## D 1.0000 0.0016 5.2e-05

##

## P value adjustment method: none

The significant differences are the same using the unadjusted p-values but the p-values
are larger then the p-values adjusted using the Bonferroni method.



The Bonferroni Method

A 100(1 — «)% simultaneous confidence interval for ¢ pairs p; — i is

y} —y_, :t tN—k,a/2caA'\/ 1/”1 + 1/”,’.

After identifying which pairs are different, the confidence interval quantifies the range of
plausible values for the differences.



The Bonferroni Method - coagulation study

The treatment means can be obtained from the table below.

A B C D

60 65 71 62
63 66 66 60
50 67 68 61
63 63 68 64
62 64 67 63

Treatment Average 61 66 68 61
Grand Average 64 64 64 64
Difference -3 2 4 -3




The Bonferroni Method - coagulation study

& = v/MSEg can be obtained from the ANOVA table.
anova(lm(y~diets,data=tab0401))

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## diets 3 228 76.0 13.571 4.658e-05 *x*x*

## Residuals 20 112 5.6

## -

## Signif. codes: 0 '#*x*' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The upper .05/(2 - 6) = 0.004 percentile of the tys_4 can be obtained with the t
quantile function in R qt ().

qt(p = 1-0.004,df = 20)

## [1] 2.945349



The Bonferroni Method - coagulation study

Plugging in these values to the confidence interval formula we can obtain a Bonferroni
adjusted 95% confidence interval for ug — pa:

66 — 61 & 2.95v5.61/1/6 + 1/6

The lower and upper limits can be calculated in R.
66-61 - qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6) # lower limit

## [1] 0.9758869
66-61 + qt(p = 1-0.004,df

20) *sqrt (5.6) *sqrt (1/6+1/6) # upper limit

## [1] 9.024113
The 95% confidence interval for pg — pa is ( 0.98, 9.02 ).



The Tukey Method

> The only difference between the Tukey and Bonferroni methods is in the choice of
the critical value.

> Treatments / and j are declared significantly different at level « if

1
Iti] > —=aqk,N—k,a

V2
> tj is the observed value of the two-sample t-statistic

> gk, N—k,« is the upper o percentile of the Studentized range distribution with
parameters k and N — k degrees of freedom.

» The CDF and inverse CDF of the Studentized Range Distribution is available in R
via the functions ptukey () and qtukey() respectively.



The Tukey Method

> A 100(1 — )% simultaneous confidence interval for ¢ pairs pj — pu; is:

_ _ 1 R
Yji-—vi.-t EQk,ka,aU\/ 1/nj+1/n;.

> The Bonferroni method is more conservative than Tukey's method. In other words,
the simutaneous confidence intervals based on the Tukey method are shorter.

>



The Tukey Method

> In the coagualtion study N = 24, k = 4 so the 5% critical value of the Studentized
range distribution is obtained using the the inverse CDF function qtukey () for this
distribution.

qtukey(p = .05,nmeans = 4,df = 20,lower.tail = FALSE)

## [1] 3.958293



The Tukey Method

> In the coagualtion study N = 24, k = 4 so the 5% critical value of the Studentized
range distribution is obtained using the the inverse CDF function qtukey () for this

distribution.

> The argument lower.tail=FALSE is used so we obtain the upper percentile of the
distribution (i.e., the value of x such that P (X > x) = 0.05).

qtukey(p = .05,nmeans = 4,df = 20,lower.tail = FALSE)

## [1] 3.958293



The Tukey Method

Let's obtain the Tukey p-value and confidence interval for g — pua. The observed value
of the test statistic is:

q°” = V2|tagl,
where _ B
YA- — YB-

ta g = —————.
&wl/nA—i-l/nB

(sqrt(2)*(66-61))/(sqrt(5.6)*sqrt(1/6+1/6))

## [1] 5.175492



The Tukey Method

The p-value

P (Q4,2o > qobs)

is then obtained using the CDF of the Studentized range distribution
1-ptukey(q = sqrt(2)*5/sqrt(2+5.6/6) ,nmeans = 4,df = 20)

## [1] 0.007797788



The Tukey Method

The 95% limits of the Tukey confidence interval for ug — pa is

tuk.crit <- qtukey(p=.05,nmeans=4,df=20,lower.tail=FALSE)
#lower limit
round (5-(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 1.18
#upper limit
round (5+(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 8.82



The Tukey Method

The width of the Tukey confidence interval for ug — pa is
round ((1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 3.82

The width of Bonferroni pug — p4 is
round(qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 4.02



The Tukey Method

> This shows that the Tukey confidence interval is shorter than Bonferroni confidence
intervals.



The Tukey Method

> This shows that the Tukey confidence interval is shorter than Bonferroni confidence
intervals.

» The command TukeyHSD() can be used to obtain all the Tukey confidence
intervals and p-values for an ANOVA.



The Tukey Method

TukeyHSD (aov(y~diets,data=tab0401))

round (TukeyHSD (aov(y~diets,data=tab0401))$diets,2)

## diff lwr upr p adj
## B-A 5 1.18 8.82 0.01
## C-A 7 3.18 10.82 0.00
## D-A 0 -3.82 3.82 1.00
## C-B 2 -1.82 5.82 0.48
## D-B -5 -8.82 -1.18 0.01
## D-C -7 -10.82 -3.18 0.00



The Tukey Method

plot (TukeyHSD(aov(y~diets,data=tab0401)))

95% family-wise confidence level

-10 -5 0

Differences in mean levels of diets

10




Sample size for ANOVA - Designing a study to compare more than two
treatments

> Consider the hypothesis that k means are equal vs. the alternative that at least two
differ.

> What is the probability that the test rejects if at least two means differ?

» Power = 1 — P(Type Il error) is this probability.



Sample size for ANOVA - Designing a study to compare more than two
treatments

The null and alternative hypotheses are:

Ho:pa = po == pgvs. Hy: pj # pj.

The test rejects at level « if

MStreat/MSE > Frk_1,N—K,a-

The power of the test is

1— B =P (MSteat/MSe > Fi_1,n-K,a) »

when Hj is false.



Sample size for ANOVA - Designing a study to compare more than two
treatments

» When Hj is false it can be shown that:

> MST,eat/a2 has a non-central Chi-square distribution with kK — 1 degrees of
freedom and non-centrality parameter §.

> MSTieat/MSE has a non-central F distribution with the numerator and denominator
degrees of freedom k — 1 and N — k respectively, and non-centrality parameter

p _
5= oy ni(ui — i)

0'2 ’

. . . PR k .
where n; is the number of observations in group i, i = Zi:l wi/k, and o2 is the
within group error variance .

> This is dentoted by Fy_1 ny—«(0).



Direct calculation of Power

> The power of the test is

P (Fk—l,N—k(5) > Fk—l,N—K,a) .

» The power is an increasing function ¢

> The power depends on the true values of the treatment means p;, the error
variance o2, and sample size n;.

> |If the experimentor has some prior idea about the treament means and error
variance, and the sample size (number of replications) the formula above will
calculate the power of the test.



Blood coagulation example - sample size
Suppose that an investigator would like to replicate the blood coagulation study with
only 3 animals per diet. In this case k = 4, n; = 3. The treatment means from the
initial study are:

Diet A B C D
Average 61 66 68 61

Im.diets <- Im(y~diets,data=tab0401) ;round(summary(lm.diets)$coefficients,2)

#i# Estimate Std. Error t value Pr(>|tl)
## (Intercept) 61 0.97 63.14 0
## dietsB 5 1.37 3.66 0
## dietsC 7 1.37 5.12 0
## dietsD 0 1.37 0.00 1

anova(lm.diets)

## Analysis of Variance Table

##

## Response: y

#it Df Sum Sq Mean Sq F value Pr(>F)

## diets 3 228 76.0 13.571 4.658e-05 *x*x*
## Residuals 20 112 5.6

## ———

## Signif. codes: 0O '*xx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1



Blood coagulation example - sample size

v

p1 = 61, up = 66, uz = 68, g = 61.
2

v

The error variance o“ was estimated as MSg = 5.6.

> Assuming that the estimated values are the true values of the parameters, the
non-centrality parameter of the F distribution is:

=3 x ((61—64)? + (66 — 64)* + (68 — 64)? + (61 — 64)?) /5.6 = 20.35714



Blood coagulation example - sample size

If we choose o = 0.05 as the significance level then F320,0.05 = 3.0983912. The power
of the test is then

P (F3,20(20.36) > 3.10) = 0.94.

This was calculated using the CDF for the F distribution in R pf ().
1-pf(q = 3.10,df1 = 3,df2 = 20,ncp = 20.36)

## [1] 0.9435208



Calculating power and sample size using the pwr library

There are several libraries in R which can calculate power and sample size for statistical
tests.

The library pwr() has a function

pwr.anova.test(k = NULL, n = NULL, f = NULL, sig.level = 0.05, power =
NULL)

For computing power and sample size.
k: Number of groups

n: Number of observations (per group)
f: Effect size

The effect size is the square root of the non-centrality parameter of the non-central F
distribution.

k —
Zi:l i (pi — 7)?

o2

f =

)

. . . A k . "
where n; is the number of observations in group /i, i = Zi:l wi/k, and o2 is the within
group error variance.



Calculating power and sample size using the pwr library

In the previous example § = 20.35714 so f = 1/20.35714 = 4.5118887.

library (pwr)
pwr.anova.test(k = 4,n = 3,f = 4.5)

##

## Balanced one-way analysis of variance power calculation
##

## k=4

## n=3

## f =4.5

## sig.level = 0.05

## power = 1

##

## NOTE: n is number in each group



Calculating power and sample size using the pwr library

Power vs. Effect Size for k=4, n=3
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Calculating power using simulation

> The general procedure for simulating power is:

>

1.

Use the underlying model to generate random data with (a) specified sample sizes, (b)
parameter values that one is trying to detect with the hypothesis test, and (c) nuisance
parameters such as variances.

. Run the estimation program (e.g., t.test(),1m() ) on these randomly generated data.
. Calculate the test statistic and p-value.

. Do Steps 1-3 many times, say, N, and save the p-values. The estimated power for a level

alpha test is the proportion of observations (out of N) for which the p-value is less than
alpha.



Calculating power using simulation

One of the advantages of calculating power via simulation is that we can investigate
what happens to power if, say, some of the assumptions behind one-way ANOVA are
violated.



Calculating power using simulation - R program
#Simulate power of ANOVA for three groups

NSIM <- 1000 # number of simulations
res <- numeric(NSIM) # store p-values in res

mul <- 2; mu2 <- 2.5;mu3 <- 2 # true mean values of treatment groups
sigmal <- 1; sigma2 <- 1; sigma3 <- 1 #variances in each group
nl <- 40; n2 <- 40; n3 <- 40 #sample size in each group

for (i in 1:NSIM) # do the calculations below N times
{

# generate sample of size nl from N(mul,sigmal 2)

y1 <- rnorm(n = nl,mean = mul,sd = sigmal)

# generate sample of size n2 from N(mu2,sigma2~2)

y2 <- rnorm(n = n2,mean = mu2,sd = sigma2)

# generate sample of size n3 from N(mu3,sigma32)

y3 <- rnorm(n = n3,mean = mu3,sd = sigma3)

y <- c(y1,y2,y3) # store all the values from the groups

# generate the treatment assignment for each group

trt <- as.factor(c(rep(1,n1),rep(2,n2),rep(3,n3)))

m <- lm(y~trt) # calculate the ANOVA

res[i] <- anova(m)[1,5] # p-value of F test

}

sum(res<=0.05) /NSIM # calculate p-value

## [1] 0.618



