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Today’s Class

ANOVA

I Multiple comparisons

I Sample size for ANOVA



Multiple Comparisons

I Suppose that experimental units were randomly assigned to three treatment groups.

I The hypothesis of intrest is: H0 : µ1 = µ2 = µ3 vs. H1 : µi ”= µj .

I Suppose that we reject H0 at level –.

I Which pairs of means are significantly di�erent from each other at level –?

I There are

!
3

2

"
= 3 possibilites.

1. µ1 ”= µ2

2. µ1 ”= µ3

3. µ2 ”= µ3
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Multiple Comparisons

I Suppose that k = 3 separate (independent) hypothesis tests at level – tests are

conducted: H0k
: µi = µj vs. H1k

: µi ”= µj .

I When H0 is true, – = P (reject H0) = 1 ≠ P (do not reject H0) = 1 ≠ (1 ≠ –).

I If H0 is true then P

!
reject at least one H0k

"
= 1 ≠ P

!
do not reject any H0k

"

I 1 ≠ P

!
do not reject any H0k

"
=

1 ≠ P (do not reject H01
and do not reject H02

and do not reject H03
)

I Since the hypotheses are independent:

1≠P (do not reject H01
) P (do not reject H02

) P (do not reject H03
) = 1≠(1≠–)3

I If – = 0.05 then the probability that at least one H0 will be falsely rejected is

1 ≠ (1 ≠ .05)3 = 0.14, which is almost three times the type I error rate.

all pairwise comparisons
.
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Multiple Comparisons
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Multiple Comparisons

H0 : µ1 = µ2 = · · · = µk vs. H1 : µi ”= µj .

If c independent hypotheses are conducted then the probability

P

!
reject at least one H0k

"
= 1 ≠ (1 ≠ –)

c

is called the family-wise error rate.

The pairwise error rate is P

!
reject H0k

"
= – for any c.



The Multiple Comparisons Problem

I The multiple comparison problem is that multiple hypotheses are tested level –
which increases the probability that at least one of the hypotheses will be falsely

rejected (family-wise error rate).

I If treatment means are significantly di�erent from the ANOVA F test then

researchers usually want to explore which means are di�erent.

I Is it appropriate to test for di�erences looking at all pairwise comparisons?

I Testing all possible pairs increases the type I error rate.

I This means that there is a higher probability, beyond the pre-stated type I error

rate (e.g. 0.05), that that a significant di�erence is detected when the truth is that

no di�erence exists.
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Example



The Bonferroni Method

To test for the di�erence between the ith and jth treatments, it is common to use the

two-sample t test. The two-sample t statistic is

tij =
ȳj· ≠ ȳi·

‡̂


1/nj + 1/ni

,

where ȳj· is the average of the ni observations for treatment j and ‡̂ is
Ô

MSE from the

ANOVA table.

Treatments i and j are declared significantly di�erent at level – if

|tij | > tN≠k,–/2,

where tN≠k,–/2 is the upper –/2 percentile of a tN≠k .

~-
critical value .



The Bonferroni Method

The total number of pairs of treatment means that can be tested is

c =

!k

2

"
=

k(k ≠ 1)

2
.

The Bonferroni method for testing H0 : µi = µj vs. H0 : µi ”= µj rejects H0 at level – if

|tij | > tN≠k,–/2c ,

where c denotes the number of pairs being tested.

①
~ Instead of using
42 use

212. c



The Bonferroni Method

In R the function pairwise.t.test() can be used to compute Bonferroni adjusted

p-values.

This is illustrated below for the blood coagualtion study.

pairwise.t.test(tab0401$y,tab0401$diets,p.adjust.method = "bonferroni")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: tab0401$y and tab0401$diets
##
## A B C
## B 0.00934 - -
## C 0.00031 0.95266 -
## D 1.00000 0.00934 0.00031
##
## P value adjustment method: bonferroni

There are signifciant di�erences at the 5% level between diets A and B, A and C, B and

D, and C and D using the Bonferroni method.

(
coagulation t.me#loets # adjust

using
bonferromi

← p-value for testing Ho '
-MA -MB's
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The Bonferroni Method

For comparison the unadjusted p-values are also calculated.

pairwise.t.test(tab0401$y,tab0401$diets,p.adjust.method = "none")

##
## Pairwise comparisons using t tests with pooled SD
##
## data: tab0401$y and tab0401$diets
##
## A B C
## B 0.0016 - -
## C 5.2e-05 0.1588 -
## D 1.0000 0.0016 5.2e-05
##
## P value adjustment method: none

The significant di�erences are the same using the unadjusted p-values but the p-values

are larger then the p-values adjusted using the Bonferroni method.

9
no

adjustment
for MC .

€00



The Bonferroni Method

A 100(1 ≠ –)% simultaneous confidence interval for c pairs µi ≠ µj is

ȳj· ≠ ȳi· ± tN≠k,–/2c ‡̂


1/nj + 1/ni .

After identifying which pairs are di�erent, the confidence interval quantifies the range of

plausible values for the di�erences.

O



The Bonferroni Method - coagulation study

The treatment means can be obtained from the table below.

A B C D

60 65 71 62

63 66 66 60

59 67 68 61

63 63 68 64

62 64 67 63

59 71 68 56

Treatment Average 61 66 68 61

Grand Average 64 64 64 64

Di�erence -3 2 4 -3



The Bonferroni Method - coagulation study

‡̂ =
Ô

MSE can be obtained from the ANOVA table.

anova(lm(y~diets,data=tab0401))

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## diets 3 228 76.0 13.571 4.658e-05 ***
## Residuals 20 112 5.6
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

The upper .05/(2 · 6) = 0.004 percentile of the t24≠4 can be obtained with the t

quantile function in R qt().

qt(p = 1-0.004,df = 20)

## [1] 2.945349

O

24 - 4

①
i - ooo 4

←

-2.945349 .



The Bonferroni Method - coagulation study

Plugging in these values to the confidence interval formula we can obtain a Bonferroni

adjusted 95% confidence interval for µB ≠ µA:

66 ≠ 61 ± 2.95
Ô

5.6


1/6 + 1/6

The lower and upper limits can be calculated in R.

66-61 - qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6) # lower limit

## [1] 0.9758869
66-61 + qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6) # upper limit

## [1] 9.024113

The 95% confidence interval for µB ≠ µA is ( 0.98, 9.02 ).

* adjusted for( Mc using Bonferroni



The Tukey Method

I The only di�erence between the Tukey and Bonferroni methods is in the choice of

the critical value.

I Treatments i and j are declared significantly di�erent at level – if

I

|tij | >
1

Ô
2

qk,N≠k,–,

I tij is the observed value of the two-sample t-statistic

I qk,N≠k,– is the upper – percentile of the Studentized range distribution with

parameters k and N ≠ k degrees of freedom.

I The CDF and inverse CDF of the Studentized Range Distribution is available in R

via the functions ptukey() and qtukey() respectively.
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The Tukey Method

I A 100(1 ≠ –)% simultaneous confidence interval for c pairs µi ≠ µj is:

I

ȳj· ≠ ȳi· ±
1

Ô
2

qk,N≠k,–‡̂


1/nj + 1/ni .

I The Bonferroni method is more conservative than Tukey’s method. In other words,

the simutaneous confidence intervals based on the Tukey method are shorter.

-
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The Tukey Method

I In the coagualtion study N = 24, k = 4 so the 5% critical value of the Studentized

range distribution is obtained using the the inverse CDF function qtukey() for this

distribution.

I The argument lower.tail=FALSE is used so we obtain the upper percentile of the

distribution (i.e., the value of x such that P (X > x) = 0.05).

qtukey(p = .05,nmeans = 4,df = 20,lower.tail = FALSE)

## [1] 3.958293

Yuriy .

&
gives crit. rave.



The Tukey Method

Let’s obtain the Tukey p-value and confidence interval for µB ≠ µA. The observed value

of the test statistic is:

q
obs

=
Ô

2|tAB |,

where

tAB =
¯yA· ≠ ¯yB·

‡̂


1/nA + 1/nB

.

(sqrt(2)*(66-61))/(sqrt(5.6)*sqrt(1/6+1/6))

## [1] 5.175492

①
-TheTukey procedure
uses the studentzed

range dist. to

assess p-valve

and CI .



The Tukey Method

The p-value

P

!
q4,20 > q

obs
"

is then obtained using the CDF of the Studentized range distribution

1-ptukey(q = sqrt(2)*5/sqrt(2*5.6/6),nmeans = 4,df = 20)

## [1] 0.007797788

✓
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The Tukey Method

The 95% limits of the Tukey confidence interval for µB ≠ µA is

tuk.crit <- qtukey(p=.05,nmeans=4,df=20,lower.tail=FALSE)
#lower limit

round(5-(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 1.18
#upper limit

round(5+(1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 8.82

-
est - error

\ est t error
.



The Tukey Method

The width of the Tukey confidence interval for µB ≠ µA is

round((1/sqrt(2))*tuk.crit*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 3.82

The width of Bonferroni µB ≠ µA is

round(qt(p = 1-0.004,df = 20)*sqrt(5.6)*sqrt(1/6+1/6),2)

## [1] 4.02

CI width = error

= Criturahex S -e



The Tukey Method

I This shows that the Tukey confidence interval is shorter than Bonferroni confidence

intervals.

I The command TukeyHSD() can be used to obtain all the Tukey confidence

intervals and p-values for an ANOVA.



The Tukey Method

TukeyHSD(aov(y~diets,data=tab0401))

round(TukeyHSD(aov(y~diets,data=tab0401))$diets,2)

## diff lwr upr p adj
## B-A 5 1.18 8.82 0.01
## C-A 7 3.18 10.82 0.00
## D-A 0 -3.82 3.82 1.00
## C-B 2 -1.82 5.82 0.48
## D-B -5 -8.82 -1.18 0.01
## D-C -7 -10.82 -3.18 0.00

*

*

*

*

£ does not Contain 0 .



The Tukey Method

plot(TukeyHSD(aov(y~diets,data=tab0401)))
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