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Today’s Class

I Sample size for ANOVA
I Randomized block designs

I Linear model and ANOVA
I Assumptions

I Other Blocking Designs
I Latin Square
I Graeco Latin Square
I hypo-Graeco Latin Square
I Randomized incomplete block design



Sample size for ANOVA - Designing a study to compare more than two

treatments

I Consider the hypothesis that k means are equal vs. the alternative that at least two
di�er.

I What is the probability that the test rejects if at least two means di�er?
I Power = 1 ≠ P(Type II error) is this probability.



Sample size for ANOVA - Designing a study to compare more than two

treatments

The null and alternative hypotheses are:

H0 : µ1 = µ2 = · · · = µk vs. H1 : µi ”= µj .

The test rejects at level – if

MSTreat/MSE Ø Fk≠1,N≠K ,–.

The power of the test is

1 ≠ — = P

!
MSTreat/MSE Ø Fk≠1,N≠K ,–

"
,

when H0 is false.



Sample size for ANOVA - Designing a study to compare more than two

treatments

I When H0 is false it can be shown that:

I MSTreat/‡2 has a non-central Chi-square distribution with k ≠ 1 degrees of
freedom and non-centrality parameter ”.

I MSTreat/MSE has a non-central F distribution with the numerator and denominator
degrees of freedom k ≠ 1 and N ≠ k respectively, and non-centrality parameter

I

” =
q

k

i=1 ni (µi ≠ µ̄)2

‡2 ,

where ni is the number of observations in group i , µ̄ =
q

k

i=1 µi /k, and ‡2 is the
within group error variance .

I This is dentoted by Fk≠1,N≠k(”).
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Direct calculation of Power

I The power of the test is

P

!
Fk≠1,N≠k(”) > Fk≠1,N≠K ,–

"
.

I The power is an increasing function ”
I The power depends on the true values of the treatment means µi , the error

variance ‡2, and sample size ni .
I If the experimentor has some prior idea about the treament means and error

variance, and the sample size (number of replications) the formula above will
calculate the power of the test.

The treatment means can be obtained from the table below.



Blood coagulation example - sample size

Suppose that an investigator would like to replicate the blood coagulation study with
only 3 animals per diet. In this case k = 4, ni = 3. The treatment means from the
initial study are:

Diet A B C D
Average 61 66 68 61

lm.diets <- lm(y~diets,data = tab0401)

anova(lm.diets)

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## diets 3 228 76.0 13.571 4.658e-05 ***

## Residuals 20 112 5.6

## ---

## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

O

A- Mean coagulator
time .

G- MSE



Blood coagulation example - sample size

I µ1 = 61, µ2 = 66, µ3 = 68, µ4 = 61.
I The error variance ‡2 was estimated as MSE = 5.6.
I Assuming that the estimated values are the true values of the parameters, the

non-centrality parameter of the F distribution is:
I

” = 3 ◊
!

(61 ≠ 64)2 + (66 ≠ 64)2 + (68 ≠ 64)2 + (61 ≠ 64)2
"

/5.6 = 20.35714

-

- Fani Ki -Filo'



Blood coagulation example - sample size

If we choose – = 0.05 as the significance level then F3,20,0.05 = 3.0983912. The power
of the test is then

P (F3,20(20.36) > 3.10) = 0.94.

This was calculated using the CDF for the F distribution in R pf().
1-pf(q = 3.10,df1 = 3,df2 = 20,ncp = 20.36)

## [1] 0.9435208

t÷÷ .

E. Is



Calculating power and sample size using the pwr library

There are several libraries in R which can calculate power and sample size for statistical
tests.

The library pwr() has a function

pwr.anova.test(k = NULL, n = NULL, f = NULL, sig.level = 0.05, power =

NULL)

For computing power and sample size.

k: Number of groups

n: Number of observations (per group)

f: E�ect size

The e�ect size is the square root of the non-centrality parameter of the non-central F

distribution.

f =

Úq
k

i=1 ni (µi ≠ µ̄)2

‡2 ,

where ni is the number of observations in group i , µ̄ =
q

k

i=1 µi /k, and ‡2 is the within
group error variance.

08



Calculating power and sample size using the pwr library

In the previous example ” = 20.35714 so f =
Ô

20.35714 = 4.5118887.
library(pwr)

pwr.anova.test(k = 4,n = 3,f = 4.5)

##

## Balanced one-way analysis of variance power calculation

##

## k = 4

## n = 3

## f = 4.5

## sig.level = 0.05

## power = 1

##

## NOTE: n is number in each group



Calculating power and sample size using the pwr library
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Calculating power using simulation

The general procedure for simulating power is:
I Use the underlying model to generate random data with (a) specified sample sizes,

(b) parameter values that one is trying to detect with the hypothesis test, and (c)
nuisance parameters such as variances.

I Run the estimation program (e.g., t.test(),lm() ) on these randomly generated
data.

I Calculate the test statistic and p-value.
I Do the previous steps many times, say, N, and save the p-values. The estimated

power for a level alpha test is the proportion of observations (out of N) for which
the p-value is less than alpha.

P



Calculating power using simulation - R program

#Simulate power of ANOVA for three groups

NSIM <- 1000 # number of simulations

res <- numeric(NSIM) # store p-values in res

mu1 <- 2; mu2 <- 2.5;mu3 <- 2 # true mean values of treatment groups

sigma1 <- 1; sigma2 <- 1; sigma3 <- 1 #variances in each group

n1 <- 40; n2 <- 40; n3 <- 40 #sample size in each group

for (i in 1:NSIM) # do the calculations below N times

{

# generate sample of size n1 from N(mu1,sigma1^2)

y1 <- rnorm(n = n1,mean = mu1,sd = sigma1)

# generate sample of size n2 from N(mu2,sigma2^2)

y2 <- rnorm(n = n2,mean = mu2,sd = sigma2)

# generate sample of size n3 from N(mu3,sigma3^2)

y3 <- rnorm(n = n3,mean = mu3,sd = sigma3)

y <- c(y1,y2,y3) # store all the values from the groups

# generate the treatment assignment for each group

trt <- as.factor(c(rep(1,n1),rep(2,n2),rep(3,n3)))

m <- lm(y~trt) # calculate the ANOVA

res[i] <- anova(m)[1,5] # p-value of F test

}

sum(res<= 0.05)/NSIM # calculate p-value

## [1] 0.642
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Blocking - Example: penicillin yield

I In this example a process for the manufacture of penicillin was investigated and
yield was primary response of interest.

I There were 4 variants of the process (treatments) to be compared.
I An important raw material corn steep liquor varied considerably.
I It was thought that corn steep liquor might causes significant di�erences in yield.
I Experimenters decided to study 5 blends of corn steep liquor.
I Within each blend the order in which the four treatments were run was random.
I Randomization done separately within each block. Within each blend the order in

which the treatments were run were randomized.
I In a fully randomized one-way design blend di�erences might not be balanced

between the treatments A, B, C, D. This might increase the experimental noise.
I But, by randomly assigning the order in which the four treatments were run within

each blend (block), blend di�erences between the groups were largely eliminated.
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Example: penicillin yield

The results of the experiment for blend 1

run blend treatment y
1 1 A 89
3 1 B 88
2 1 C 97
4 1 D 94

The results of the experiment for blend 2

run blend treatment y
4 2 A 84
2 2 B 77
3 2 C 92
1 2 D 79

Randomization of treatments was done separately within each block.

Separate
Randomization.



The ANOVA identity for randomized block designs

The total sum of squares can be re-expressed by adding and subtracting the treatment
and block averages as:

aÿ

i=1

bÿ

j=1

(yij ≠ ȳ··)2 =
aÿ

i=1

bÿ

j=1

[(ȳi· ≠ ȳ··) + (ȳ·j ≠ ȳ··) + (yij ≠ ȳi· ≠ ȳ·j + ȳ··))]2 .

After some algebra . . . SST =
q

a

i=1
q

b

j=1 (yij ≠ ȳ··)2 is equal to

b

aÿ

i=1

(ȳi· ≠ ȳ··)2 + a

bÿ

j=1

(ȳ·j ≠ ȳ··)2 +
aÿ

i=1

bÿ

j=1

(yij ≠ ȳi· ≠ ȳ·j + ȳ··)2

So,

SST = SSTreat + SSBlocks + SSE

{
.

}



poll answer is B
'

THE
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Degrees of freedom

I There are N observations so SST has N ≠ 1 degrees of freedom.

I There are a treatments and b blocks so SSTreat and SSBlocks have a ≠ 1 and b ≠ 1
degrees of freedom, respectively.

I The sum of squares on the left hand side the equation should add to the sum of
squares on the right hand side of the equation. Therefore, the error sum of squares
has

(N ≠ 1) ≠ (a ≠ 1) ≠ (b ≠ 1) = (ab ≠ 1) ≠ (a ≠ 1) ≠ (b ≠ 1) = (a ≠ 1)(b ≠ 1)

degrees of freedom.
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Linear Model for Randomized Block Design

I The linear model for the randomized block design is

yij = µ + ·i + —j + ‘ij ,

where E(‘ij ) = 0.

I The model is completely additive.
I It assumes that there is no interaction between blocks and treatments.
I An interaction could occur if an impurity in blend 3 poisoned treatment B and

made it ine�ective, even though it did not a�ect the other treatments.

y
error

component
.

-
treatment
erect

-block
{ overallmean effect



Linear Model for Randomized Block Design

pen.model <- lm(y~as.factor(treatment)+as.factor(blend),data=tab0404)

anova(pen.model)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(treatment) 3 70 23.333 1.2389 0.33866

as.factor(blend) 4 264 66.000 3.5044 0.04075 *

Residuals 12 226 18.833

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Calculation of the p-value assumes that

‘ij ≥ N(0, ‡2).

So that MSTreat/MSE ≥ Fa≠1,(a≠1)(b≠1), MSBlocks ≥ Fb≠1,(a≠1)(b≠1).

✓ treatment
block .

- treatment
- block

.



Penicillin example - interpretation

I There is no evidence that the four treatments produce di�erent yields.

I How could this information be used in optimizing yield in the manufacturing
process?

I Is one of the treatments less expensive to run?
I If one of the treatments is less expensive to run then an analysis on cost rather

than yield might reveal important information.
I The di�erences between the blocks might be informative.
I In particular the investigators might speculate about why blend 1 has such a

di�erent influence on yield.
I Perhaps now the experimenters should study the characteristics of the di�erent

blends of corn steep liquor. (Box, Hunter, Hunter, 2005)

• : large p-value .
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Other blocking designs

I Latin square
I Graeco-Latin squares,
I Hyper-Graeco-Latin Squares,
I Balanced incomplete block designs.



The Latin Square Design

I There are several other types of designs that utilize the blocking principle such as
The Latin Square design.

I If there is more than one nuisance source that can be eliminated then a Latin
Square design might be appropriate.



Latin Square Design - Automobile Emissions

I An experiment to test the feasibility of reducing air pollution.

I A gasoline mixture was modified by changing the amounts of certain chemicals.
I This produced four di�erent types of gasoline: A, B, C, D
I These four treatments were tested with four di�erent drivers and four di�erent cars.
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Latin Square Design - Automobile Emissions

I Two blocking factors: cars and drivers.
I The Latin square design was used to help eliminate possible di�erences between

drivers I, II, III, IV and cars 1, 2, 3, 4.
I Randomly allocate treatments, drivers , and cars.

Driver Car 1 Car 2 Car 3 Car 4
Driver I A B D C
Driver II D C A B
Driver III B D C A
Driver IV C A B D



Latin Square Design - Automobile Emissions

I The data from the experiment.

Driver Car 1 Car 2 Car 3 Car 4
Driver I A B D C

19 24 23 26
Driver II D C A B

23 24 19 30
Driver III B D C A

15 14 15 16
Driver IV C A B D

19 18 19 16



Latin Square Design - Automobile Emissions

I Why not standardize the conditions and make the 16 experimental runs with a
single car and single driver for the four treatments?

I Could also be valid but Latin square provides a wider inductive basis.



Latin Square Design - Automobile Emissions

latinsq.auto <- lm(y~additive+as.factor(cars)+as.factor(driver),data=tab0408)

anova(latinsq.auto)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

additive 3 40 13.333 2.5 0.156490

as.factor(cars) 3 24 8.000 1.5 0.307174

as.factor(driver) 3 216 72.000 13.5 0.004466 **

Residuals 6 32 5.333

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

SST = SScars + SSdrivers + SSAdditives + SSE

No evidence of treatment
effect

,

but there is
treat

an effect
Block
Block due to

driver.



Latin Square Design - Automobile Emissions

I Assumming that the residuals are independent and normally distributed and the
null hypothesis that there are no treatment di�erences is true then the ratio of
mean squares for treatments and residuals has an F3,6 distribution.

I This analysis assumes that treatments, cars, and drivers are additive.
I If the design was replicated then this would increase the degrees of freedom for the

residuals and reduce the mean square error.



General Latin Square

I A Latin square for p factors of a p ◊ p Latin square, is a square containing p rows
and p columns

I Each of the p
2 cells contains one of the p letters that correspond to a treatment.

I Each letter occurs once and only once in each row and column.
I There are many possible p ◊ p Latin squares.
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General Latin Square

I A Latin square for p factors of a p ◊ p Latin square, is a square containing p rows
and p columns

I Each of the p
2 cells contains one of the p letters that correspond to a treatment.

I Each letter occurs once and only once in each row and column.
I There are many possible p ◊ p Latin squares.

- Magic Squares
.

- Sudoku .



General Latin Square

Which of the following is a Latin square?

Col1 Col2 Col3
Row 1 B A C
Row 2 A C B
Row 3 C B A

Col1 Col2 Col3
Row 1 A B C
Row 2 C A B
Row 3 B B A0

Not a

latin Square .



Misuse of the Latin Square

I Inappropriate to use Latin square to study factors that can interact.
I E�ects of one factor can then be mixed up with interactions of other factors.
I Outliers can occur as a result of these interactions.
I When interactions between factors are likely possible need to use a factorial design.



Graeco-Latin Square

A Graeco-Latin square is a k ◊ k pattern that permits study of k treatments
simultaneously with three di�erent blocking variables each at k levels.

Car 1 Car 2 Car 3 Car 4
Driver I A – B — C “ D ”
Driver II B ” A “ D — C –
Driver III C — D – A ” B “
Driver IV D “ C ” B – A —

-

# treatment =

# levels
of

each

blocking
variable.L

.



Graeco-Latin Square

I This is a Latin square in which each Greek letter appears once and only once with
each Latin letter.

I Can be used to control three sources of extraneous variability (i.e. block in three
di�erent directions).

Driver Car 1 Car 2 Car 3 Car 4
Driver I A – B — C “ D ”
Driver II B ” A “ D — C –
Driver III C — D – A ” B “
Driver IV D “ C ” B – A —

§ § Green letters .

Latin letters

Controlling for three blocking
,
another

blocking
variables. : Driver , Car factor

-



Graeco-Latin Square

To generate a 3 ◊ 3 Graeco-Latin square design, superimpose two designs using the
Greek letters for the second 3 ◊ 3 Latin square.

Col1 Col2 Col3
Row 1 B A C
Row 2 A C B
Row 3 C B A

Col1 Col2 Col3
Row 1 A B C
Row 2 C A B
Row 3 B C A

Blocking var
2

~InColt Coll CoD
sure

.

Blockingvar 1 Blocking var 3

a p s hay
levels

s a P 2,131 X
To implement :

P 8 x

Randomly assign levels def block, Treatments are

to Colt , Col 2 ,
co 13 AB

,
Randomly assign treatmentsRow 1 ,

ROWE' Row )
y , B s 8

to festers A ,Bic -



hyper-Graeco-Latin Square

These three Latin squares can be superimposed to form a hyper-Graeco-Latin square.
Can be used to control 4 nuisance factors (i.e. block 4 factors).

Row Col1 Col2 Col3 Col4
Row 1 B A D C
Row 2 C D A B
Row 3 D B C A
Row 4 A C B D

Row Col1 Col2 Col3 Col4
Row 1 D A C B
Row 2 A D B C
Row 3 B C A D
Row 4 C B D A

Row Col1 Col2 Col3 Col4
Row 1 A D B C
Row 2 C A D B
Row 3 B C A D
Row 4 D B C A



hyper-Graeco-Latin Square

I A machine used for testing the wear on types of cloth.
I Four pieces of cloth can be compared simultaneously on one machine.
I Response is weight loss in tenths of mg when rubbed against a standard grade of

emery paper for 1000 revolutions of the machine.



hyper-Graeco-Latin Square

I Specimens of 4 di�erent cloths (A, B,C,D) are compared.
I The wearing qualities can be in any one of 4 positions P1, P2, P3, P4 on the

machine.
I Each emery (–, —, “, ”) paper used to cut into for quarters and each quarter used

to complete a cycle C1, C2, C3, C4 of 1000 revolutions.
I Object was to compare treatments.

✓
treatments

to
compare

.

-
block

variable
#I

↳
a variable # 2 § block variable # 3 .

Block variable #
4 - type of specimenholders

→
See
next Slide

.



hyper-Graeco-Latin Square

i) type of specimen holders 1, 2, 3, 4
ii) position on the machine P1, P2, P3, P4.
iii) emory paper sheet –, —, “, ”.
iv) machine cycle C1, C2, C3, C4.

The design was replicated. The first replicate is shown in the table below.

P1 P2 P3 P4

C1 A – 1 B — 2 C “ 3 D ” 4
320 297 299 313

C2 C — 4 D – 3 A ” 2 B “ 1
266 227 260 240

C3 D “ 2 C ” 1 B – 4 A — 3
221 240 267 252

C4 B ” 3 A “ 4 D — 1 C – 2
301 238 243 290

} 4
blocking variables.

00
←weights .



hyper-Graeco-Latin Square

A linear model can be fit so that the ANOVA table and parameter treatment e�ects can
be calculated.
wear.hypsq <- lm(y~treatment+as.factor(rep)+as.factor(position)+

as.factor(cycle)+as.factor(holder)+
as.factor(paper),data=tab0412)

anova(wear.hypsq)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 1705.3 568.45 5.3908 0.021245 *

as.factor(rep) 1 603.8 603.78 5.7259 0.040366 *

as.factor(position) 3 2217.3 739.11 7.0093 0.009925 **

as.factor(cycle) 6 14770.4 2461.74 23.3455 5.273e-05 ***

as.factor(holder) 3 109.1 36.36 0.3449 0.793790

as.factor(paper) 6 6108.9 1018.16 9.6555 0.001698 **

Residuals 9 949.0 105.45

---

Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

re⇒*:
""

(
there is
evidence
thata
diff . between
treatments
exist!

SS Treat = SS
pep
t SS

pos.tint SS cycle
+SS

holder
TSSpapert 5)Error



Block what you can

and randomize the

rest r .
-



Balanced incomplete block design

I Suppose that instead of four samples to be included on each 1000 revolution cycle
only three could be included, but the experimenter still wanted to compare four
treatments.

I The size of the block is now 3 - too small to accommodate all treatments
simultaneously.

I A balanced incomplete block design has the property that every pair of treatments
occurs together in a block the same number of times.

Cycle block
1 A B C
2 A B D
3 A C D
4 B C D

Cycle block A B C D
1 x x x
2 x x x
3 x x x
4 x x x

00

⑦


