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Today’s Class

I Lenth’s Method for Assessing significance in unreplicated factorial designs
I Blocking factorial designs

I E�ect hierarchy principle
I Generation of orthogonal blocks
I Generators and deining relations



Factorial Notation - Design Matrix in Standard Order

A 24 design matrix in standard form is:
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Example - 23 design for studying a chemical reaction

A process development experiment studied four factors in a 24 factorial design.
I amount of catalyst charge x1,
I temperature x2,
I pressure x3,
I concentration of one of the reactants x4.
I The response y is the percent conversion at each of the 16 run conditions. The

design is shown below.



Example - 24 design for studying a chemical reaction

run x1 x2 x3 x4 conversion
1 -1 -1 -1 -1 70
2 1 -1 -1 -1 60
3 -1 1 -1 -1 89
4 1 1 -1 -1 81
5 -1 -1 1 -1 69
6 1 -1 1 -1 62
7 -1 1 1 -1 88
8 1 1 1 -1 81
9 -1 -1 -1 1 60

10 1 -1 -1 1 49
11 -1 1 -1 1 88
12 1 1 -1 1 82
13 -1 -1 1 1 60
14 1 -1 1 1 52
15 -1 1 1 1 86
16 1 1 1 1 79

The design is not replicated so it’s not possible to estimate the standard errors of the
factorial e�ects.

repeatedly ice -



Example - 24 design for studying a chemical reaction

fact1 <- lm(conversion~x1*x2*x3*x4,data=tab0510a)

round(2*fact1$coefficients,2)

(Intercept) x1 x2 x3 x4 x1:x2

144.50 -8.00 24.00 -0.25 -5.50 1.00

x1:x3 x2:x3 x1:x4 x2:x4 x3:x4 x1:x2:x3

0.75 -1.25 0.00 4.50 -0.25 -0.75

x1:x2:x4 x1:x3:x4 x2:x3:x4 x1:x2:x3:x4

0.50 -0.25 -0.75 -0.25

5. e. of Coefficients would be NA

- not available ° : Imc ) won It

be able to compute i not replicated.



Half-Normal Plots
I An advantage of this plot is that all the large estimated e�ects appear in the upper

right hand corner and fall above the line.
I The half-normal plot for the e�ects in the process development example can be

obtained with DanielPlot() with the option half=TRUE.
library(FrF2)

DanielPlot(fact1,half=TRUE,autolab=F,

main="Half-Normal plot of effects from process development study")
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Lenth’s method: testing significance for experiments without variance
estimates

I Half-normal and normal plots are informal graphical methods involving visual
judgement.

I It’s desirable to judge a deviation from a straight line quantitatively based on a
formal test of significance.

I Lenth (1989) proposed a method that is simple to compute and performs well.



Lenth’s method

I Let ◊̂(1), ..., ◊̂(N) be N = 2k ≠ 1 factorial e�ects in a 2k design.

I Let m be the median of ˆ|◊|(1), ..., ˆ|◊|(N).
I An estimate of the standard error of an e�ect, called the pseudo standard error, is

then given by, s0 = 1.5m.
I Any estimated e�ect exceeding 2.5s0 is excluded, and, if needed m and s0 are

recomputed.
I A margin of error is then given by ME = t1≠–/2,d · s0, where d = N/3.
I All estimates greater than ME may be viewed as “significant”.
I But, with so many estimates some will be falsely identified.
I A simultaneous margin of error is: SME = t“,s · s0, where “ = (1 + (1 ≠ –)1/N)/2.
I Estimated e�ects exceeding SME are declared significant, but SME is adjusted for

multiple comparison.
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Lenth’s method
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Lenth’s method - Lenth Plot for process development example
LenthPlot(fact1,cex.fac = 0.8)
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I . Full Normal plot
2. Half Normal plot
3 . Leath 'S Method

These three methods

can assess if factorial
effects on an un replicated

design are due
to chance ( e.g, Significant)



Blocking Factorial Designs



Blocking factorial designs

I In a trial conducted using a 23 design it might be desirable to use the same batch
of raw material to make all 8 runs.

I Suppose that batches of raw material were only large enough to make 4 runs.
Then the concept of blocking could be used.



Blocking factorial designs

Consider the 23 design.

Run 1 2 3 12 13 23 123
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

Runs Block
1, 4, 6, 7 I
2, 3, 5, 8 II

How are the runs assigned to the blocks?
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Blocking factorial designs

Run 1 2 3 12 13 23 123
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

Runs Block sign of 123
1, 4, 6, 7 I ≠
2, 3, 5, 8 II +



Blocking factorial designs

I Any systematic di�erences between the two blocks of four runs will be eliminated
from all the main e�ects and two factor interactions.

I What you gain is the elimination of systematic di�erences between blocks.
I But now the three factor interaction is confounded with any batch (block)

di�erence.
I The ability to estimate the three factor interaction separately from the block e�ect

is lost.
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E�ect hierarchy principle

1. Lower-order e�ects are more likely to be important than higher-order e�ects.

2. E�ects of the same order are equally likely to be important.
I One reason that many accept this principle is that higher order interactions are

more di�cult to interpret or justify physically.
I Investigators are less interested in estimating the magnitudes of these e�ects even

when they are statistically significant.
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Generating Factorial Blocks

In the 23 example suppose that the block variable is given the identifying number 4.

Run 1 2 3 4=123
1 -1 -1 -1 -1
2 1 -1 -1 1
3 -1 1 -1 1
4 1 1 -1 -1
5 -1 -1 1 1
6 1 -1 1 -1
7 -1 1 1 -1
8 1 1 1 1

I Think of your experiment as containing four factors.
I The fourth factor will have the special property that it does not interact with other

factors.
I If this new factor is introduced by having its levels coincide exactly with the plus

and minus signs attributed to 123 then the blocking is said to be generated by the
relationship 4=123.

I This idea can be used to derive more sophisticated blocking arrangements.



An example of how not to block

Suppose we would like to arrange the 23 design into four blocks.

Run 1 2 3 4=123 5=23 45=1
1 -1 -1 -1 -1 1 -1
2 1 -1 -1 1 1 1
3 -1 1 -1 1 -1 -1
4 1 1 -1 -1 -1 1
5 -1 -1 1 1 -1 -1
6 1 -1 1 -1 -1 1
7 -1 1 1 -1 1 -1
8 1 1 1 1 1 1

I Runs are placed in di�erent blocks depending on the signs of the block variables in
columns 4 and 5.

I Consider two block factors called 4 and 5.
I 4 is associated with ?
I 5 is associated ?

O
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An example of how not to block

Run 1 2 3 4=123 5=23 45=1
1 -1 -1 -1 -1 1 -1
2 1 -1 -1 1 1 1
3 -1 1 -1 1 -1 -1
4 1 1 -1 -1 -1 1
5 -1 -1 1 1 -1 -1
6 1 -1 1 -1 -1 1
7 -1 1 1 -1 1 -1
8 1 1 1 1 1 1

Block Run
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An example of how not to block

I 45 is confounded with the main e�ect of 1.
I Therefore, if we use 4 and 5 as blocking variables we will not be able to separately

estimate the main e�ect 1.
I Main e�ects should not be confounded with block e�ects.

Violates the effect hierarchy principle !



An example of how not to block

I Any blocking scheme that confounds main e�ects with blocks should not be used.
I This is based on the assumption:

The block-by-treatment interactions are negligible.
I This assumption states that treatment e�ects do not vary from block to block.
I Without this assumption estimability of the factorial e�ects will be very

complicated.



An example of how not to block

I For example, if B1 = 12 then this implies two other relations:

1B1 = 112 = 2 and B12 = 122 = 122 = 1.

I If there is a significant interaction between the block e�ect B1 and the main e�ect
1 then the main e�ect 2 is confounded with 1B1.

I If there is a significant interaction between the block e�ect B1 and the main e�ect
2 then the main e�ect 1 is confounded with B12.



How to do it

Run 1 2 3 4=12 5=13
1 -1 -1 -1 1 1
2 1 -1 -1 -1 -1
3 -1 1 -1 -1 1
4 1 1 -1 1 -1
5 -1 -1 1 1 -1
6 1 -1 1 -1 1
7 -1 1 1 -1 -1
8 1 1 1 1 1

I Set 4=12, 5=13.
I Then I = 124 = 135 = 2345.
I Estimated block e�ects 4, 5, 45 are assoicated with the estimated two-factor

interaction e�ects 12, 13, 23 and not any main e�ects.
I Which runs are assigned to which blocks?
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Generators and Defining Relations

I A simple calculus is available to show the consequences of any proposed blocking
arrangement.

I If any column in a 2k design are multiplied by themselves a column of plus signs is
obtained. This is denoted by the symbol I.

I = 11 = 22 = 33 = 44 = 55,

where, for example, 22 means the product of the elements of column 2 with itself.
I Any column multiplied by I leaves the elements unchanged. So, I3 = 3.



Generators and Defining Relations

I A general approach for arranging a 2k design in 2q blocks of size 2k≠q is as follows.
I Let B1, B2, ..., Bq be the block variables and the factorial e�ect vi is confounded

with Bi ,

B1 = v1, B2 = v2, ..., Bq = vq .

I The block e�ects are obtained by multiplying the Bi ’s:

B1B2 = v1v2, B1B3 = v1v3, ..., B1B2 · · · Bq = v1v2 · · · vq

I There are 2q ≠ 1 possible products of the Bi ’s and the I (whose components are +).

B , -_ 12 , BE 13 K=3 ,
8=2

22-1 = 4- l =3



Generators and Defining Relations

Example: A 25 design can be arranged in 8 blocks of size 25≠3 = 4.

Consider two blocking schemes.

1. Define the blocks as

B1 = 135, B2 = 235, B3 = 1234.

The remaining blocks are confounded with the following interactions:

2. Define the blocks as:

B1 = 12, B2 = 13, B3 = 45.

Which is a better blocking scheme?

→ BeBe 13/8.23/51=12
2-2way two-wayinteractions B.Bz = 43/5.423/4=245
4- B.way

1- away
B2B -- 295-7944,
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