
STA305/1004-Class 20

Dec. 3, 2019



Today’s Class

I Fractional factorial design



Fractional factorial designs

I A 2k full factorial requires 2k runs.

I Full factorials are seldom used in practice for large k (k>=7).
I For economic reasons fractional factorial designs, which consist of a fraction of full

factorial designs are used.
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Example - E�ect of five factors on six properties of film in eight runs

I An experiment to determine how the cloudiness of a floor wax was a�ected when
certain changes were introduced into the formulation for its preparation.

I The properties of the films were recorded as they dried.
I Polymer solutions were prepared and spread as a film on a microscope slide. Six

di�erent responses were recorded.
I Five factors (each with 2 levels) were studied in an 8 run 2k factorial experiment.
I How many runs are usually required to study five factors, each with 2 levels, in a

factorial experiment?
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Example - E�ect of five factors on six properties of film in eight runs

run A B C D E y1 y2 y3 y4 y5 y6
1 -1 -1 -1 1 -1 no no yes no slightly yes
2 1 -1 -1 1 1 no yes yes yes slightly yes
3 -1 1 -1 -1 1 no no no yes no no
4 1 1 -1 -1 -1 no yes no no no no
5 -1 -1 1 -1 1 yes no no yes no slightly
6 1 -1 1 -1 -1 yes yes no no no no
7 -1 1 1 1 -1 yes no yes no slightly yes
8 1 1 1 1 1 yes yes yes yes slightly yes

Factors - +
A: catalyst (%) 1 1.5
B: additive (%) 1/4 1/2
C: emulsifier P (%) 2 3
D: emulsifier Q (%) 1 2
E: emulsifier R (%) 1 2

y1 - Hazy?, y2 - Adheres?, y3 - Grease on Top of Film?, y4 - Grease Under Film?, y5 -
Dull, Adjusted pH, y6 - Dull original pH



Example - E�ect of five factors on six properties of film in eight runs

I The eight run design was constructed beginning with a design matrix in standard
order for a 23 design in the factors A, B, C.

I The column of signs associated with the BC interaction was used to accommodate
factor D, the ABC interaction column was used for factor E.

I A full factorial for the five factors A, B, C, D, E would have needed 25 = 32 runs.
I Only 1/4 were run. This design is called a quarter fraction of the full 25 or a 25≠2

design (a two to the five minus two design).
I In general a 2k≠p design is a 1

2p fraction of a 2k design using 2k≠p runs. This
design can study k factors in 1

2p fraction of the runs.
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E�ect Aliasing and Design Resolution

I A chemist in an industrial development lab was trying to formulate a household
liquid product using a new process.

I The liquid had good properties but was unstable.
I The chemist wanted to synthesize the product in hope of hitting conditions that

would give stability, but without success.
I The chemist identified four important influences: A (acid concentration), B

(catalyst concentration), C (temperature), D (monomer concentration).
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E�ect Aliasing and Design Resolution

I His 8 run fractional factorial design is shown below.

test A B C D y
1 -1 -1 -1 -1 20
2 1 -1 -1 1 14
3 -1 1 -1 1 17
4 1 1 -1 -1 10
5 -1 -1 1 1 19
6 1 -1 1 -1 13
7 -1 1 1 -1 14
8 1 1 1 1 10

I The signs of the ABC interaction is used to accommodate factor D. The tests were
run in random order. He wanted to achieve a stability value of at least 25.

=
ABC



E�ect Aliasing and Design Resolution

fact.prod <- lm(y~A*B*C*D,data=tab0602)
fact.prod1 <- aov(y~A*B*C*D,data=tab0602)
round(2*fact.prod$coefficients,2)

(Intercept) A B C D A:B
29.25 -5.75 -3.75 -1.25 0.75 0.25

A:C B:C A:D B:D C:D A:B:C
0.75 -0.25 NA NA NA NA

A:B:D A:C:D B:C:D A:B:C:D
NA NA NA NA

Even though the stability never reached the desired level of 25, two important factors, A
and B, were identified.

Missing . :D --ABC

00



BsMD::DanielPlot(fact.prod,half = T)
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E�ect Aliasing and Design Resolution

What information could have been obtained if a full 25 design had been used?

Factors Number of e�ects
Main 5
2-factor 10
3-factor 10
4-factor 5
5-factor 1

I 31 degrees of freedom in a 32 run design.

I 16 used for estimating three factor interactions or higher.
I Is it practical to commit half the degrees of freedom to estimate such e�ects?
I According to e�ect hierarchy principle three-factor and higher not usually

important.
I Thus, using full factorial wasteful. It’s more economical to use a fraction of full

factorial design that allows additional lower order e�ects to be estimated.



E�ect Aliasing and Design Resolution

What information could have been obtained if a full 25 design had been used?

Factors Number of e�ects
Main 5
2-factor 10
3-factor 10
4-factor 5
5-factor 1

I 31 degrees of freedom in a 32 run design.
I 16 used for estimating three factor interactions or higher.

I Is it practical to commit half the degrees of freedom to estimate such e�ects?
I According to e�ect hierarchy principle three-factor and higher not usually

important.
I Thus, using full factorial wasteful. It’s more economical to use a fraction of full

factorial design that allows additional lower order e�ects to be estimated.



E�ect Aliasing and Design Resolution

What information could have been obtained if a full 25 design had been used?

Factors Number of e�ects
Main 5
2-factor 10
3-factor 10
4-factor 5
5-factor 1

I 31 degrees of freedom in a 32 run design.
I 16 used for estimating three factor interactions or higher.
I Is it practical to commit half the degrees of freedom to estimate such e�ects?

I According to e�ect hierarchy principle three-factor and higher not usually
important.

I Thus, using full factorial wasteful. It’s more economical to use a fraction of full
factorial design that allows additional lower order e�ects to be estimated.



E�ect Aliasing and Design Resolution

What information could have been obtained if a full 25 design had been used?

Factors Number of e�ects
Main 5
2-factor 10
3-factor 10
4-factor 5
5-factor 1

I 31 degrees of freedom in a 32 run design.
I 16 used for estimating three factor interactions or higher.
I Is it practical to commit half the degrees of freedom to estimate such e�ects?
I According to e�ect hierarchy principle three-factor and higher not usually

important.

I Thus, using full factorial wasteful. It’s more economical to use a fraction of full
factorial design that allows additional lower order e�ects to be estimated.



E�ect Aliasing and Design Resolution

What information could have been obtained if a full 25 design had been used?

Factors Number of e�ects
Main 5
2-factor 10
3-factor 10
4-factor 5
5-factor 1

I 31 degrees of freedom in a 32 run design.
I 16 used for estimating three factor interactions or higher.
I Is it practical to commit half the degrees of freedom to estimate such e�ects?
I According to e�ect hierarchy principle three-factor and higher not usually

important.
I Thus, using full factorial wasteful. It’s more economical to use a fraction of full

factorial design that allows additional lower order e�ects to be estimated.



E�ect Aliasing and Design Resolution
Consider a design that studies five factors in 16 run. A half fraction of a 25 or 25≠1.

Run B C D E Q
1 -1 1 1 -1 -1
2 1 1 1 1 -1
3 -1 -1 1 1 -1
4 1 -1 1 -1 -1
5 -1 1 -1 1 -1
6 1 1 -1 -1 -1
7 -1 -1 -1 -1 -1
8 1 -1 -1 1 -1
9 -1 1 1 -1 1

10 1 1 1 1 1
11 -1 -1 1 1 1
12 1 -1 1 -1 1
13 -1 1 -1 1 1
14 1 1 -1 -1 1
15 -1 -1 -1 -1 1
16 1 -1 -1 1 1

I The factor E is assigned to the column BCD.
I The column for E is used to estimate the main e�ect of E and also for BCD.
I The main factor E is said to be aliased with the BCD interaction.

- E-- BCD



E�ect Aliasing and Design Resolution

I This aliasing relation is denoted by

E = BCD or I = BCDE ,

where I denotes the column of all +’s.
I This uses same mathematical definition as the confounding of a block e�ect with a

factorial e�ect.
I Aliasing of the e�ects is the trade-o� one must make for choosing a smaller design.
I The 25≠1 design has only 15 degrees of freedom for estimating factorial e�ects, it

cannot estimate all 31 factorial e�ects among the factors B, C, D, E, Q.

E= BCD

⇒ Ee - E = BCDE
7

✓ ⇒
I= BCDE



E�ect Aliasing and Design Resolution

I The equation I = BCDE is called the defining relation of the 25≠1 design.
I The design is said to have resolution IV because the defining relation consists of

the “word” BCDE, which has “length” 4.
I Multiplying both sides of I = BCDE by column B

B = B ◊ I = B ◊ BCDE = CDE ,

the relation B = CDE is obtained.
I B is aliased with the CDE interaction. Following the same method all 15 aliasing

relations can be obtained.

- higher resolution designs are usuallypref
- over

lower res. designs .

-

I= BcDE
-

FIBER , D= c.DE , C = B.DE
, D= nBCE

T BC ⇒ DE
,
BD ICE

,
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'CD
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I- E = BCDE
-E

Q= B c.DE Q , QE. =
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,
QB QCDE,

E = BCDI Qc= a.BDE , QDIQBCE ,
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= B CD QBD= -QCE , QBE QCD



E�ect Aliasing and Design Resolution

I To get the most desirable alias patterns, fractional factorial designs of highest
resolution would usually be employed.

I There are important exceptions to this rule that we will not cover in the course.



Class Question

Consider a 25≠1 fractional factorial design.

(a) How many factors does this design have?
(b) How many runs are involved in this design?
(c) How many levels for each factor?
(d) The factor E is assigned to the four-way interaction (ABCD). What is the defining

relation? What is the design resolution? What are the aliasing relations?

{ factors
16 = 25-1=24

2

Define I = ADCDE
Relation

:

Res :I

Aliasing : E -- ABCD , A- BCDE ,
- - - 15 aliasing

AB = CDE , AC = BDE I - - - - relations .

-



Example - Leaf spring experiment

An experiment to improve a heat treatment process on truck leaf springs (Wu and
Hamada (2009)). The height of the unloaded spring (y) is an important quality
characteristic.



Example - Leaf spring experiment

Five factors that might a�ect height (y) were studied in this 25≠1 design.

Factor Level
B. Temperature 1840 (-), 1880 (+)
C. Heating time 23 (-), 25 (+)
D. Transfer time 10 (-), 12 (+)
E. Hold down time 2 (-), 3 (+)
Q. Quench oil temperature 130-150 (-), 150-170 (+)



Example - Leaf spring experiment
The factor E is assigned the column of the three-way interaction between B, C, and D.

B C D E Q y
-1 1 1 -1 -1 7.79
1 1 1 1 -1 8.07

-1 -1 1 1 -1 7.52
1 -1 1 -1 -1 7.63

-1 1 -1 1 -1 7.94
1 1 -1 -1 -1 7.95

-1 -1 -1 -1 -1 7.54
1 -1 -1 1 -1 7.69

-1 1 1 -1 1 7.29
1 1 1 1 1 7.73

-1 -1 1 1 1 7.52
1 -1 1 -1 1 7.65

-1 1 -1 1 1 7.40
1 1 -1 -1 1 7.62

-1 -1 -1 -1 1 7.20
1 -1 -1 1 1 7.63

Questions: (1) What is the defining relation? (2) What is the design resolution? (3)
What are the aliasing relations?

I= BcDE I

see previous slide -



Example - Leaf spring experiment

The factorial e�ects are estimated as before.
fact.leaf <- lm(y~B*C*D*E*Q,data=leafspring)
round(2*fact.leaf$coefficients,2)

(Intercept) B C D E Q
15.27 0.22 0.18 0.03 0.10 -0.26

B:C B:D C:D B:E C:E D:E
0.02 0.02 -0.04 NA NA NA
B:Q C:Q D:Q E:Q B:C:D B:C:E

0.08 -0.17 0.05 0.03 NA NA
B:D:E C:D:E B:C:Q B:D:Q C:D:Q B:E:Q

NA NA 0.01 -0.04 -0.05 NA
C:E:Q D:E:Q B:C:D:E B:C:D:Q B:C:E:Q B:D:E:Q

NA NA NA NA NA NA
C:D:E:Q B:C:D:E:Q

NA NA

Questions: (1) Why are some e�ects NA? (2) What is the factorial e�ect of B?

(
Note : this are

factorial estimates I =
BCDE

✓
since mutt -Y't BE = CD

factorize
Effect of

o

B is
2X 0.22

= o -
44 .

A

O
O O

Aliasing produces NA for some effects.
C ' 9 -s BE and CD are aliases . This is one

of the

effects of using I= BCDE as defining
relation'
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Example - Leaf spring experiment
Question: Interpret the interaction between Heating Time (C) and Quench oil
temperature (Q).
interaction.plot(x.factor = leafspring$C, trace.factor = leafspring$Q,

response = leafspring$y)
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Table 8: Group Means

Q C mean y
-1 -1 7.59
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Interpretation of interaction between cand Q :

The average change in Quench oil temp
when heating time is high vs . low .

Mean change
( = t 't

Mean change
( = - I



Example - Leaf spring experiment
Question: Which factors are not due to chance?
BsMD::DanielPlot(fact.leaf,half = T)
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fact.leaf2 <- aov(y~B*C*D*E*Q,data=leafspring)
BsMD::LenthPlot(fact.leaf2,cex.fac = 0.8)
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